Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.319
Filtrar
1.
Gene ; 807: 145952, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34500049

RESUMEN

Extreme temperature is one of the serious threats to crop production in present and future scenarios of global climate changes. Lentil (Lens culinaris) is an important crop, and there is a serious lack of genetic information regarding environmental and temperature stresses responses. This study is the first report of evaluation of key genes and molecular mechanisms related to temperature stresses in lentil using the RNA sequencing technique. De novo transcriptome assembly created 44,673 contigs and differential gene expression analysis revealed 7494 differentially expressed genes between the temperature stresses and control group. Basic annotation of generated transcriptome assembly in our study led to the identification of 2765 novel transcripts that have not been identified yet in lentil genome draft v1.2. In addition, several unigenes involved in mechanisms of temperature sensing, calcium and hormone signaling and DNA-binding transcription factor activity were identified. Also, common mechanisms in response to temperature stresses, including the proline biosynthesis, the photosynthetic light reactions balancing, chaperone activity and circadian rhythms, are determined by the hub genes through the protein-protein interaction networks analysis. Deciphering the mechanisms of extreme temperature tolerance would be a new way for developing crops with enhanced plasticity against climate change. In general, this study has identified set of mechanisms and various genes related to cold and heat stresses which will be useful in better understanding of the lentil's reaction to temperature stresses.


Asunto(s)
Lens (Planta)/crecimiento & desarrollo , Lens (Planta)/genética , Estrés Fisiológico/genética , Cambio Climático , Frío/efectos adversos , Respuesta al Choque por Frío/genética , Productos Agrícolas/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Calor/efectos adversos , Anotación de Secuencia Molecular/métodos , Fotosíntesis , Mapas de Interacción de Proteínas/genética , Temperatura , Transcriptoma/genética
2.
Sci Total Environ ; 802: 149542, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34454138

RESUMEN

The alpine area of the Australian mainland is highly sensitive to climate and environmental change, and potentially vulnerable to ecosystem tipping points. Over the next two decades the Australian alpine region is predicted to experience temperature increases of at least 1 °C, coupled with a substantial decrease in snow cover. Extending the short instrumental record in these regions is imperative to put future change into context, and potentially provide analogues of warming. We reconstructed past temperatures, using a lipid biomarker palaeothermometer technique and mercury flux changes for the past 3500 years from the sediments of Club Lake, a high-altitude alpine tarn in the Snowy Mountains, southeastern Australia. Using a multi-proxy framework, including pollen and charcoal analyses, high-resolution geochemistry, and ancient microbial community composition, supported by high-resolution 210Pb and AMS 14C dating, we investigated local and regional ecological and environmental changes occurring in response to changes in temperature. We find the region experienced a general warming trend over the last 3500 years, with a pronounced climate anomaly occurring between 1000 and 1600 cal yrs. BP. Shifts in vegetation took place during this warm period, characterised by a decline in alpine species and an increase in open woodland taxa which co-occurred with an increase in regional fire activity. Given the narrow altitudinal band of Australian alpine vegetation, any future warming has the potential to result in the extinction of alpine species, including several endemic to the area, as treelines are driven to higher elevations. These findings suggest ongoing conservation efforts will be needed to protect the vulnerable alpine environments from the combined threats of climate changes, fire and invasive species.


Asunto(s)
Ecosistema , Incendios , Australia , Cambio Climático , Bosques
3.
Sci Total Environ ; 802: 149643, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34461482

RESUMEN

Southwest China is an important biodiversity hotspot in the world and is controlled by the Pacific and Indian Ocean monsoon in the east and west part respectively. However, how abiotic and biotic factors affect the response of vegetation to climate change in different monsoon regions is still not clear. Here we used the annual change rate of growing-season normalized difference vegetation index (NDVI trend) during 1982-2015 to explore the vulnerability of vegetation (forests and shrubs) activity to climate change in southwest China. We examined NDVI trend in relation to: 1) climate change trends, i.e. annual change rate of water and energy availability, indicated by the Palmer Drought Index (PDSI) and potential evapotranspiration (PET), respectively; 2) climatic condition, i.e. mean PDSI and PET during 1982-2015; 3) vegetation height; 4) biome type; 5) monsoon region. The results showed that NDVI generally increased in the Pacific monsoon region, especially in the southern areas, probably because the vegetation under more productive climate were more resistant to climate change, and also because decreased temperature lead to lower evapotranspiration which alleviated the slight drought trend in this region. In contrast, NDVI generally decreased in the Indian Ocean monsoon region which showed more pronounced drought trend, especially in the tall subalpine and tropical forests of Southeast Tibetan Mountains, which supports the "hydraulic limitation hypothesis" that vegetation height interacted with climate change in affecting vegetation vulnerability. Our analysis highlighted the critical roles of different monsoon systems, climate condition and vegetation height in affecting ecosystem vulnerability. We suggest that the (sub)tropical forests in the Pacific monsoon region may have act as an important carbon sink during the past decades, while the tall forests in Southeast Tibetan mountains (a biodiversity center with high carbon stock) are highly vulnerable to climate change and should have priority in ecosystem protection.


Asunto(s)
Cambio Climático , Ecosistema , China , Sequías , Bosques
4.
Sci Total Environ ; 802: 149651, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34525747

RESUMEN

Forest disturbances alter land biophysics. Their impacts on local climate and land surface temperature (LST) cannot be directly measured by comparing pre- and post-disturbance observations of the same site over time (e.g., due to confounding such as background climate fluctuations); a common remedy is to compare spatially-adjacent undisturbed sites instead. This space-for-time substitution ignores the inherent biases in vegetation between two paired sites, interannual variations, and temporal dynamics of forest recovery. Besides, there is a lack of observation-based analyses at fine spatial resolutions capable of capturing spatial heterogeneity of small-scale forest disturbances. To address these limitations, here we report new satellite analyses on local climate impacts of forest loss at 30 m resolution. Our analyses combined multiple long-term satellite products (e.g., albedo and evapotranspiration [ET]) at 700 sites across major climate zones in the conterminous United States, using time-series trend and changepoint detection methods. Our method helped isolate the biophysical changes attributed to disturbances from those attributed to climate backgrounds and natural growth. On average, forest loss increased surface albedo, decreased ET, and reduced leaf area index (LAI). Net annual warming-an increase in LST-was observed after forest loss in the arid/semiarid, northern, tropical, and temperate regions, dominated by the warming from decreased ET and attenuated by the cooling from increased albedo. The magnitude of post-disturbance warming was related to precipitation; climate zones with greater precipitation showed stronger and longer warming. Reduction in leaf or LAI was larger in evergreen than deciduous forests, but the recovery in LAI did not always synchronize with those of albedo and ET. Overall, this study presents new evidence of biophysical effects of forest loss on LST at finer spatial resolutions; our time-series method can be further leveraged to derive local policy-relevant ecosystem climate regulation metrics or support model-based climate-biosphere studies.


Asunto(s)
Cambio Climático , Ecosistema , Clima , Bosques , Temperatura , Estados Unidos
5.
Sci Total Environ ; 806(Pt 1): 150412, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34562757

RESUMEN

The intergovernmental panel on climate change (IPCC) predicts significant changes in precipitation patterns, an increase in temperature, and groundwater level variations by 2100. These changes are expected to alter light non-aqueous phase liquid (LNAPL) impacts since groundwater level fluctuations and temperature are known to influence both the mobility and release of LNAPL compounds to air and groundwater. Knowledge of these potential effects is currently dispersed in the literature, hindering a clear vision of the processes at play. This review aims to synthesize and discuss the possible effects of the increase in temperature and groundwater level fluctuations on the behavior of LNAPL and its components in a climate change context. In summary, a higher amplitude of groundwater table variations and higher temperatures will probably increase biodegradation processes, the LNAPL mobility, and spreading across the smear zone, favoring the release of LNAPL compounds to the atmosphere and groundwater but decreasing the LNAPL mass and its longevity. Outcomes will, nevertheless, vary greatly across arid, cold, or humid coastal environments, where different effects of climate change are expected. The effects of the climate change factors linked to soil heterogeneities, local conditions, and weathering processes will govern LNAPL behavior and need to be further clarified.


Asunto(s)
Cambio Climático , Agua Subterránea , Biodegradación Ambiental , Suelo , Temperatura
6.
Sci Total Environ ; 804: 150045, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34798718

RESUMEN

Understanding the effects of elevated temperatures on soil organic matter (SOM) decomposition pathways in northern peatlands is central to predicting their fate under future warming. Peatlands role as carbon (C) sink is dependent on both anoxic conditions and low temperatures that limit SOM decomposition. Previous studies have shown that elevated temperatures due to climate change can disrupt peatland's C balance by enhancing SOM decomposition and increasing CO2 emissions. However, little is known about how SOM decomposition pathways change at higher temperatures. Here, we used an integrated research approach to investigate the mechanisms behind enhanced CO2 emissions and SOM decomposition under elevated temperatures of surface peat soil collected from a raised and Sphagnum dominated mid-continental bog (S1 bog) peatland at the Marcel Experimental Forest in Minnesota, USA, incubated under oxic conditions at three different temperatures (4, 21, and 35 °C). Our results indicated that elevated temperatures could destabilize peatland's C pool via a combination of abiotic and biotic processes. In particular, temperature-driven changes in redox conditions can lead to abiotic destabilization of Fe-organic matter (phenol) complexes, previously an underestimated decomposition pathway in peatlands, leading to increased CO2 production and accumulation of polyphenol-like compounds that could further inhibit extracellular enzyme activities and/or fuel the microbial communities with labile compounds. Further, increased temperatures can alter strategies of microbial communities for nutrient acquisition via changes in the activities of extracellular enzymes by priming SOM decomposition, leading to enhanced CO2 emission from peatlands. Therefore, coupled biotic and abiotic processes need to be incorporated into process-based climate models to predict the fate of SOM under elevated temperatures and to project the likely impacts of environmental change on northern peatlands and CO2 emissions.


Asunto(s)
Suelo , Sphagnopsida , Cambio Climático , Temperatura , Humedales
7.
Sci Total Environ ; 804: 150167, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34798731

RESUMEN

Climate change often leads to shifts in the distribution of small pelagic fish, likely by changing the match-mismatch dynamics between these sensitive species within their environmental optima. Using present-day habitat suitability, we projected how different scenarios of climate change (IPCC Representative Concentration Pathways 2.6, 4.5 and 8.5) may alter the large scale distribution of European sardine Sardina pilchardus (a model species) by 2050 and 2100. We evaluated the variability of species-specific environmental optima allowing a comparison between present-day and future scenarios. Regardless of the scenario, sea surface temperature and salinity and the interaction between current velocity and distance to the nearest coast were the main descriptors responsible for the main effects on sardine's distribution. Present-day and future potential "hotspots" for sardine were neritic zones (<250 km) with water currents <0.4 m s-1, where SST was between 10 and 22 °C and SSS > 20 (PSU), on average. Most variability in projected shifts among climatic scenarios was in habitats with moderate to low suitability. By the end of this century, habitat suitability was projected to increase in the Canary Islands, Iberian Peninsula, central North Sea, northern Mediterranean, and eastern Black Sea and to decrease in the Atlantic African coast, southwest Mediterranean, English Channel, northern North Sea and Western U.K. A gradual poleward-eastward shift in sardine distribution was also projected among scenarios. This shift was most pronounced in 2100 under RCP 8.5. In that scenario, sardines had a 9.6% range expansion which included waters along the entire coast of Norway up and into the White Sea. As habitat suitability is mediated by the synergic effects of climate variability and change on species fitness, it is critical to apply models with robust underlying species-habitat data that integrate knowledge on the full range of processes shaping species productivity and distribution.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Peces , Predicción , Temperatura
8.
Sci Total Environ ; 804: 150182, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34798735

RESUMEN

Understanding the evolutions of the permafrost extent and active layer thickness (ALT) in the Northern Hemisphere (NH) are critical for global carbon flux simulation, climate change prediction, and engineering risk assessment. The temporal change characteristics of the permafrost extent and ALT for the NH have not been studied. We used the Kudryavtsev method, integrating a 0.5° × 0.5° spatial resolution of air temperature, soil texture, snow depth, vegetation type, soil volume moisture content, and organic content to simulate the changes of permafrost extent and ALT in the NH from 1969 to 2018. The results indicated that permafrost extent decreased from 23.25 × 106 km2 (average from 1969 to 1973) to 21.64 × 106 km2 (average from 2014 to 2018), with a linear rate of -0.023 × 106 km2/a. Siberia had the highest degradation rate of 0.014 × 106 km2/a, followed by Alaska, Mongolian Plateau, Qinghai-Tibet Plateau, Northern Canada, and Greenland, with linear rates of -0.012 × 106, -0.005 × 106, -0.004 × 106, -0.0014 × 106, and - 0.0004× 106 km2/a, respectively. The average ALT in the NH increased at a linear rate of 0.0086 m/a. Alaska and Mongolian Plateau had the highest thickening rate of 0.024 m/a, followed by Qinghai-Tibet Plateau, Siberia, Northern Canada, and Greenland, which had linear rates of 0.009, 0.008, 0.0072, and 0.003 m/a, respectively. The uncertainty of the results could be attributed to the inaccurate forcing data and limitations of the Kudryavtsev model.


Asunto(s)
Hielos Perennes , Cambio Climático , Suelo , Temperatura , Tibet
9.
Sci Total Environ ; 804: 150221, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34798745

RESUMEN

Warming trends in Patagonia and severe droughts in recent decades are still poorly understood in terms of their hydrological effects. The effects of climate change on water dynamics in addition to human water management could generate a future water scarcity scenario in one of the regions with the most abundant water resources of Chile. The aim of this work is to focus on assessing the impacts of warming trends on water dynamics in the Patagonian Simpson River watershed during the last two decades. We estimated anomalies in the main components of water balance such as precipitation (P), snow cover (SC), evapotranspiration (ET) and streamflows (Q) as well as surface variables and meteorological forcing (i.e. air temperature - Ta, solar radiation - RS, land surface temperature - LST). The processed data were obtained from remote sensing, reanalysis and in-situ data. We implemented a trend analysis for each variable in the period 2000-2019 at monthly, seasonal and annual scale. Results showed a warming trend in Ta and LST of about 1.2 °C and 2.1 °C, respectively, concentrated mainly in the autumn and winter seasons. Although P showed non-significant trends, Q diminished significantly at rates of more than 9.1 m3/s/decade, representing 36% of its historical mean. However, the decreases in Q are seen only in the maximum (spring) and minimum (summer) seasonal flows. These decreases are explained by significant increases in ET, led by a positive feedback of its drivers (LST, Ta and RS), which is directly linked to the impact of warming and an associated vegetation greenness in the watershed, as well as a decrease in SC during winter that feeds the Simpson River during spring and summer. The decrease in Q is reinforced by the intensification of water withdrawals in recent decades, as shown by an accelerated increase in water rights for agricultural and drinking uses. In a context of water scarcity and increasing and extreme droughts, this work contributes to further understanding water dynamics in western Patagonia, providing support for policy and decision-making when defining sustainable productive practices at watershed scale.


Asunto(s)
Monitoreo del Ambiente , Agua , Cambio Climático , Humanos , Ríos , Estaciones del Año
10.
J Environ Manage ; 301: 113768, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34583282

RESUMEN

Many studies have assessed the relative sensitivity of ecosystems to climate change, and even optimized climate states from long-term averages to infer short-term changes, but how ecosystem sensitivity and its relationships with climate variability vary over time remains elusive. By combining the vegetation sensitivity index (VSI) and a 15 year moving window, we analyzed interannual variability in spatiotemporal patterns of vegetation sensitivity to short-term climate variability and its correlations with climatic factors in China over the past three decades (1982-2015). We demonstrated that vegetation sensitivity shows high spatial heterogeneity, and varies with vegetation type and climate region. Generally, vegetation in the southwest and mountainous regions was more sensitive, especially coniferous forests and isolated shrubland patches. Comparatively, vegetation in dry regions was less sensitive to climate variability than in wetter climates. Due to frequent climate variability in the early 1990s, a large increase in the VSI was detected in 1996. Significant increases in the interannual variability of vegetation sensitivity were observed in greater than 23.7% of vegetated areas and decreases in only 4.2%. Solar radiation was the dominant climate driver of vegetation sensitivity, followed by temperature and precipitation. However, climate controls are not invariable across a range of climatic conditions, such as precipitation exerted an increasing influence on changes of vegetation sensitivity. Quantitative analyses of ecosystem sensitivity to climate variability such as ours are vital to identify which regions and vegetation are most vulnerable to future climate variability.


Asunto(s)
Cambio Climático , Ecosistema , China , Bosques , Estaciones del Año , Temperatura
11.
J Environ Manage ; 301: 113769, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600426

RESUMEN

Forests have been undergoing through immense pressure due to the factors like human activities; procurement of forest products and climate change which is a major factor influencing this pressure buildup on forests. Climate change and temperature increase caused by anthropogenic activities have notably affected forests and wildlife on a global scale. High temperature increases the soil-water evaporation, resulting in drier soils, and water loss in forest flora. The incidence of forest fires has doubled since 1984 and these are linked to global warming. Drought influences fuel moisture by bringing about physiological changes in forest vegetation leading to forest fires. Forest resilience is hampered because of temperature and drought stress at the developing stage of plant's life cycle leading to the shift in plant species in those areas. Forest fire incidences can be managed with proper management strategies such as sustainable, community and urban forest management. A careful monitoring of stress precursors, subsistence uses of forests, ecological education and planting of near native and new indigenous plant species are the tools that can aid in efficient forest management.


Asunto(s)
Incendios , Incendios Forestales , Cambio Climático , Sequías , Bosques , Humanos , Árboles
12.
J Environ Manage ; 301: 113776, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34619587

RESUMEN

Agricultural landscapes are the leading edge in the advancement of sustainability and climate change adaptation. The purpose of this study is to endogenize culture as shaped by natural-cultural feedback into individuals' decision-making processes on sustainability policy support. We present an agent-based model in which an adaptive cultural decision-rule quantifies the probability of an agent deciding to support a wildlife area policy for the Smoky Hill River Watershed (SHRW) in Kansas, USA. By using an ABM to examine the watershed as a coupled natural and human system, we learned that agents would adopt a new behavior, voting for the policy, if the cultural conditions were right, with high levels of beliefs and norms for freshwater and its biota. Our results indicate that individuals in the SHRW are not engaged in caring for fish, plants, and bird richness in their rivers and playas with few individuals supporting the policy in the naïve cultural setting (8.9 % of simulated population). However, enough agents would support the policy under a lower cultural threshold (40.7 % of simulated population). Our results show that sustainability policies need to account for the local culture to gain support, and if a policy is culturally meaningful, it does not need to be cheap. For an agricultural landscape, such as those commonly found in the Central Great Plains, this study presents new levers for policymakers on the conditions needed to help assemble popular support for sustainability policies.


Asunto(s)
Agricultura , Cambio Climático , Conservación de los Recursos Naturales , Animales , Agua Dulce , Humanos , Políticas , Ríos
13.
Sci Total Environ ; 803: 149700, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34487901

RESUMEN

The Eurasian steppe is the largest steppe region in the world and is an important part of the global grassland ecosystem. The eastern Eurasian steppe has favorable hydrothermal conditions and has the highest productivity and the richest biodiversity. Located in the arid and semi-arid region, the eastern Eurasian steppe has experienced large-scale grassland degradation due to dramatic climate change and intensive human activities during the past 20 years. Hence, accurate estimation of aboveground biomass (AGB, gC m-2) and belowground biomass (BGB, gC m-2) is necessary. In this study, plenty of AGB and BGB in-situ measurements were collected among dominated grassland types during summer in 2013 and 2016-2018 in the eastern Eurasian steppe. Vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS), Digital Elevation Model (DEM) and climate variables were chosen as independent variables to establish predictive models for AGB and BGB with random forest (RF). Both AGB (R2 = 0.47, MAE = 21.06 gC m-2, and RMSE = 27.52 gC m-2) and BGB (R2 = 0.44, MAE = 173.02 gC m-2, and RMSE = 244.20 gC m-2) models showed acceptable accuracy. Then the RF models were applied to generate spatially explicit AGB and BGB estimates for the study area over the last two decades (2000-2018). Both AGB and BGB showed higher values in the Greater Khingan Mountains and decreased gradually to the east and west sides. The mean values for AGB and BGB were 62.16 gC m-2 and 531.35 gC m-2, respectively. The climatic factors were much more important in controlling biomass than anthropogenic drivers, and shortage of water and raising temperature were the main limiting factor of AGB and BGB, respectively, in the peak growth season. These findings provide scientific data for the scientific management of animal husbandry and can contribute to the sustainable development of grassland ecology in the eastern Eurasian steppe.


Asunto(s)
Cambio Climático , Ecosistema , Biomasa , Pradera , Humanos , Imágenes Satelitales , Temperatura
14.
Sci Total Environ ; 803: 149810, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34492489

RESUMEN

Two-way feedbacks exist between water-stressed vegetation and agricultural drought. Previous studies have focused mainly on the responses of vegetation to agricultural droughts but rarely on those of agricultural droughts to vegetation. Based on a new drought index (AgDI) that incorporates dynamic climatic and vegetation information, this study evaluated the impacts of climate and vegetation variabilities on agricultural droughts in 20 catchments in southwestern China, a region frequently hit by droughts. Results showed that the drought-stressed vegetation tended to alleviate agricultural droughts, and the drought-alleviating ability of vegetation was affected by vegetation types and the magnitudes of the changes in climate. Compared to other types of vegetation, the natural forest generally has a greater ability to affect agricultural drought. Overall, the relative contribution (mean of 29.9 ± 24.6%) of changes in vegetation to agricultural drought was at least comparable to those of the changes in potential evapotranspiration (mean of 14.4 ± 12.7%). Results also showed that even though vegetation has the ability to alleviate agricultural droughts, the changes in agricultural droughts were still dominated by climate changes, especially precipitation (mean relative contribution of 55.7 ± 24.2%).


Asunto(s)
Sequías , Bosques , Agricultura , Cambio Climático , Agua
15.
Sci Total Environ ; 803: 149864, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34500282

RESUMEN

Understanding the distribution of hyperaccumulators helps to implement more efficient phytoremediation strategies of contaminated sites, however, limited information is available. Here, we investigated the geographical distribution of the first-known arsenic-hyperaccumulator Pteris vittata in China and the key factors under two climate change scenarios (SSP 1-2.6 and SSP 5-8.5) at two time points (2030 and 2070). Species distribution model (MaxEnt) was applied to examine P. vittata distribution based on 399 samples from field surveys and existing specimen records. Further, among 23 environmental factors, 11 variables were used in the MaxEnt model, including temperature, precipitation, elevation, soil property, and UV-B radiation. The results show that P. vittata can grow in ~23% of the regions in China. Specifically, it is mainly distributed in 11 provinces of southern China, including Hainan, Guangdong, Guangxi, Yunnan, Guizhou, Hunan, Hubei, Jiangxi, Fujian, Zhejiang, and Jiangsu. Besides, eastern Sichuan, and southern Henan, Shaanxi, and Anhui are suitable for P. vittata growth. Under two climate change scenarios, P. vittata distribution in China would decrease by ~5.76-7.46 × 104 km2 in 2030 and ~3.22-4.68 × 104 km2 in 2070, with southern Henan and most Jiangsu being unsuitable for P. vittata growth. Among the 11 environmental variables, the minimum temperature of coldest month (bio6) and temperature annual range (bio7) are the two key factors limiting P. vittata distribution. At bio6 <-5 °C and/or bio7 >33 °C, the regions are unsuitable for P. vittata growth. Based on the MaxEnt model, precipitation had limited effects, so P. vittata can probably survive under both dry and moist environments. This study helps guide phytoremediation of As-polluted soils using P. vittata and provides an example to evaluate habitat suitability of hyperaccumulators at international scales.


Asunto(s)
Arsénico , Pteris , Contaminantes del Suelo , Arsénico/análisis , Biodegradación Ambiental , China , Cambio Climático , Contaminantes del Suelo/análisis
16.
Sci Total Environ ; 804: 150180, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34517319

RESUMEN

It is meaningful to study how China can maintain the sustainable utilization of natural resources and the continuous improvement of environmental conditions while ensuring the stable development of the economy and society. In this study, a new indices system was proposed for the analysis of nexus among social-economic-natural resource-environment complex systems following the DPSIR (Driving Force - Pressure - State - Impact - Respond) framework, CCD (Coupling Coordination Degree) analysis and VAR (Vector Auto-Regressive) model were applied for quantifying the synergy and trade-off of China in the nexus framework. Results showed that: (1) Although China's rapid development has caused big consumption of natural resources and increasing pollutants discharges during 1978-2018, China has not got into trouble of extreme resource depletion and ecosystem collapse. On the contrary, China guaranteed food supply, stopped forest degradation, and avoided pollution-induced healthy crises & life-shortening. (2) Adjustment of water pollution industries and the increase of wastewater treatment investment contributed 39% and 37% to the reduction of water pollutant discharge, respectively. The contribution of energy structure adjustment to acid rain control was 26%. The pollutants discharged in no less than 70% of the provinces are strictly controlled below the environmental capacity. The increase of fertilizer application and effective irrigated area contributed 32% to China's grain increase, and China's grain self-sufficiency rate has been maintained above 110%. The improvement of the water-saving irrigation rate contributed 28% to the reduction of water consumption. The reduction of comprehensive efficiency contributed 23.8% to the decrease in energy consumptions per GDP. The CCD assessment showed that China has entered a phase of pre-eminently coordinated development since 2013.


Asunto(s)
Ecosistema , Cambio Social , China , Conservación de los Recursos Naturales , Contaminación Ambiental , Recursos Naturales , Contaminación del Agua
17.
Sci Total Environ ; 805: 150103, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34537689

RESUMEN

Climate change is projected to affect the hydrological cycles in China, while the effects are expected to vary spatiotemporally. Understanding the variations in water security conditions and their sensitivity to climatic variables is crucial for assessing regional ecosystem responses to climate change. In the present study, we estimated the water yield capacity, an important indicator of water security in North China (NC), at a spatial resolution of 1 km during the last two decades based on the Budyko framework and quantified the sensitivity of water yield change to climate change among different vegetation types. The results showed that the performances of the Budyko framework were reliable both at the pixel scale and across large watersheds. The annual water yield in North China was estimated to be 7.61 ± 2.67 ∗ 1010 m3/yr, with an average mean water yield (MWY) of 49.51 ± 17.49 mm/yr. The spatial pattern of mean water yield change (MWYC) exhibited high heterogeneity; 46% of the study region was dominated by an increasing trend, while 9.84% was statistically significant (P < 0.05). Compared with temperature, the water yield capacity was more sensitive to precipitation variation. A consistent trend of variation was found in cropland between water yield and precipitation, while negative sensitivity coefficients were found in natural vegetation types. The variation in sensitivity coefficients (Swyp) in natural vegetation showed that in regions with a decrease in precipitation, the variation in water yield capacity also decreased, while in regions with an increase in precipitation from 0 to 8 mm/yr, the water yield capacity first decreased and then increased with precipitation. Our findings suggest that grass and shrubs would be more beneficial to regional water security in North China's revegetation, while afforestation would provide protection for the regional environment from extreme rainfall events.


Asunto(s)
Cambio Climático , Ecosistema , China , Temperatura , Agua , Abastecimiento de Agua
18.
Sci Total Environ ; 805: 150106, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34537691

RESUMEN

Soil, a non-renewable resource, sustains life on Earth by supporting around 95% of global food production and providing ecosystem services such as biomass production, filtration of contaminants and transfer of mass and energy between spheres. Unsustainable management practices and climate change are threatening the natural capital of soils, particularly in the Mediterranean region, where increasing population, rapid land-use changes, associated socio-economic activities and climate change are imposing high pressures on the region's shallow soils. Despite evidence of high soil susceptibility to degradation and desertification, the true extent of soil degradation in the region is unknown. This paper reviews and summarises the scientific literature and relevant official reports, with the aim to advance this knowledge by synthesizing, mapping, and identifying gaps regarding the status, causes, and consequences of soil degradation processes in the European Mediterranean region. This is needed as scientific underpinning of efforts to counteract soil degradation in the region. Three main degradation categories are then considered: physical (soil sealing, compaction, erosion), chemical (soil organic matter, contamination, salinisation), and biological. We find some degradation processes to be relatively well-documented (e.g. soil erosion), while others, such as loss of biodiversity, remain poorly addressed, with limited data availability. We suggest establishment of a continuous, harmonised soil monitoring system at national and regional scale in the Mediterranean region to provide comparable datasets and chart the spatial extent and temporal changes in soil degradation, and corresponding economic implications. This is critical to support decision-making and fulfilment of related sustainable development goals.


Asunto(s)
Ecosistema , Suelo , Cambio Climático , Conservación de los Recursos Naturales , Región Mediterránea
19.
Sci Total Environ ; 805: 150320, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34543791

RESUMEN

Climate change is expected to have strong social-ecological implications, with global but especially regional and local challenges. To assess the climatic vulnerability of a given territory, it is necessary to evaluate its exposure to climate change and its adaptive capacity. This study describes the development of an Action Plan for Adapting to Climate Change in the Tâmega and Sousa Region, a mountainous inter-municipal community in the North of Portugal. The goals were to identify the main impacts of climate change on water resources, agriculture, forests, biodiversity, and socioeconomic sectors, as well as to develop a plan, merging local and scientific knowledge through a transdisciplinary lens. This study describes an approach that combines modelling methods, applied in the different sectors, and participatory methods, based on the analysis of the perceptions of local actors. Results indicate that the target region will experience a generalized increase in temperature and a decrease in precipitation, which will negatively impact all studied social-ecological dimensions. Overall, local business and institutional agents perceive the primary and tourism sectors as the most vulnerable in the region. The described framework demonstrates the engagement process between relevant scientific experts and local practitioners, as well as how it is critical to understand the impacts of climate change and to support the co-design of an adaptation plan, which in turn can guide political and economic decision-making towards effective implementation of the plan. In addition, the difficulties and challenges encountered during this process are discussed to support future plans and strategies for local adaptation.


Asunto(s)
Cambio Climático , Bosques , Aclimatación , Agricultura , Percepción
20.
Sci Total Environ ; 805: 150152, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34543796

RESUMEN

Ecosystems in the arid/humid transition zone (AHTZ) of northern China are highly sensitive to climate change and human activities. Accurately assessing the impact of climate change on these ecosystems is important for effectively reducing the risks faced by them under future climate change. In this study, the leaf area index during the selected growing season (LAIGS) was used as an indicator for vegetation activity. After comparison different potential indicators, the growing season temperature (TGS) was used to indicate temperature, and the growing season aridity index (AIGS), which considers the regional water budget, was used to indicate moisture rather than precipitation, which is used more commonly. Correlation analysis and residual trends were used to study the influence of climatic and non-climatic factors on vegetation activity in the AHTZ from 1982 to 2016. The results for regions where LAIGS increased significantly (0.037/10 yr, 53.58% of the study area), the regions where LAIGS dominated by non-climatic factors (18.40%) was larger than areas dominated by climatic factors (9.61%). However, most (25.57%) of the regions in the selected study area were mainly driven by both climatic and non-climatic factors. In about half (49.73%) of the climate-affected regions, significant changes in LAIGS were driven jointly by TGS and AIGS. These regions were mainly in the northern and western Loess Plateau. The regions where changes were driven mainly by AIGS, and those where changes were driven mainly by TGS, each accounted for nearly a quarter of climate-affected regions (24.87% and 25.40%, respectively). The former regions were on the western Songliao Plain, the northern North China Plain, and the northern Loess Plateau, and the latter regions were in the northern Greater Khingan Mountains, on the southern North China Plain, in the western mountains of North China, and on the southern Loess Plateau.


Asunto(s)
Cambio Climático , Ecosistema , China , Actividades Humanas , Humanos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...