Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.118
Filtrar
1.
Gene ; 807: 145952, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34500049

RESUMEN

Extreme temperature is one of the serious threats to crop production in present and future scenarios of global climate changes. Lentil (Lens culinaris) is an important crop, and there is a serious lack of genetic information regarding environmental and temperature stresses responses. This study is the first report of evaluation of key genes and molecular mechanisms related to temperature stresses in lentil using the RNA sequencing technique. De novo transcriptome assembly created 44,673 contigs and differential gene expression analysis revealed 7494 differentially expressed genes between the temperature stresses and control group. Basic annotation of generated transcriptome assembly in our study led to the identification of 2765 novel transcripts that have not been identified yet in lentil genome draft v1.2. In addition, several unigenes involved in mechanisms of temperature sensing, calcium and hormone signaling and DNA-binding transcription factor activity were identified. Also, common mechanisms in response to temperature stresses, including the proline biosynthesis, the photosynthetic light reactions balancing, chaperone activity and circadian rhythms, are determined by the hub genes through the protein-protein interaction networks analysis. Deciphering the mechanisms of extreme temperature tolerance would be a new way for developing crops with enhanced plasticity against climate change. In general, this study has identified set of mechanisms and various genes related to cold and heat stresses which will be useful in better understanding of the lentil's reaction to temperature stresses.


Asunto(s)
Lens (Planta)/crecimiento & desarrollo , Lens (Planta)/genética , Estrés Fisiológico/genética , Cambio Climático , Frío/efectos adversos , Respuesta al Choque por Frío/genética , Productos Agrícolas/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Calor/efectos adversos , Anotación de Secuencia Molecular/métodos , Fotosíntesis , Mapas de Interacción de Proteínas/genética , Temperatura , Transcriptoma/genética
2.
J Environ Manage ; 301: 113768, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34583282

RESUMEN

Many studies have assessed the relative sensitivity of ecosystems to climate change, and even optimized climate states from long-term averages to infer short-term changes, but how ecosystem sensitivity and its relationships with climate variability vary over time remains elusive. By combining the vegetation sensitivity index (VSI) and a 15 year moving window, we analyzed interannual variability in spatiotemporal patterns of vegetation sensitivity to short-term climate variability and its correlations with climatic factors in China over the past three decades (1982-2015). We demonstrated that vegetation sensitivity shows high spatial heterogeneity, and varies with vegetation type and climate region. Generally, vegetation in the southwest and mountainous regions was more sensitive, especially coniferous forests and isolated shrubland patches. Comparatively, vegetation in dry regions was less sensitive to climate variability than in wetter climates. Due to frequent climate variability in the early 1990s, a large increase in the VSI was detected in 1996. Significant increases in the interannual variability of vegetation sensitivity were observed in greater than 23.7% of vegetated areas and decreases in only 4.2%. Solar radiation was the dominant climate driver of vegetation sensitivity, followed by temperature and precipitation. However, climate controls are not invariable across a range of climatic conditions, such as precipitation exerted an increasing influence on changes of vegetation sensitivity. Quantitative analyses of ecosystem sensitivity to climate variability such as ours are vital to identify which regions and vegetation are most vulnerable to future climate variability.


Asunto(s)
Cambio Climático , Ecosistema , China , Bosques , Estaciones del Año , Temperatura
3.
J Environ Manage ; 301: 113801, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600422

RESUMEN

Indigenous communities are often on the front-lines of climate change, and for tribes such as the Pointe-au-Chien Indian Tribe (PACIT) that make their homes and livelihoods in the dynamic landscapes of Coastal Louisiana (USA), sea-level rise, subsidence, and land loss are very real reminders of why they must continue to hone their adaptive capacity that has evolved over many generations and continues to evolve as the pace of change quickens. PACIT members have an inherited wisdom about their surrounding environment and continue to build on that body of observational knowledge that is passed from generation to generation to sustain themselves in this dynamic landscape. This knowledge is woven through their culture and is sometimes referred to as traditional ecological knowledge (TEK). The PACIT and other Indigenous communities around the world are using creative strategies to adapt to the impacts of climate change that include partnering with researchers to combine their TEK with science in approaches to enhance strategies dealing with climate change impacts, mitigation, and adaptation. Tribes and other Indigenous communities often have a strong connection to place that helps to inspire innovative ideas to promote greater sustainability of vulnerable ecosystems and the communities that depend on them, but not the institutional support to implement them. Overcoming this barrier requires a better understanding of their perception of the issues and what they prioritize in sustaining their cultures and the ecosystems on which they depend. Better inclusion of their knowledge into applied research is necessary to support these communities in their efforts to make sure their knowledge is recognized, understood, and valued in environmental management applications. The primary goal for this study was to develop a decision-support tool that aids the PACIT in assessing local ecological change and associated risks to the Tribe's resilience. Using remote sensing datasets and geographic information systems (GIS) processes to represent aspects of the Tribe's TEK to achieve this goal, we developed methods for producing interactive maps that reflect local perceptions of landscape features within the Tribe's ecosystem-dependent livelihood base that contribute most to the community's physical vulnerability to coastal hazards. This case study is offered to consider how Indigenous communities like the PACIT are shaping their own coastal hazards mitigation planning efforts in line with their unique needs, cultural practices, and values. The results of this study can provide relevant insight to applied environmental scientists and others working with Indigenous communities that are facing similar circumstances around the world.


Asunto(s)
Cambio Climático , Ecosistema , Aclimatación , Nativos Estadounidenses , Humanos , Factores de Riesgo
4.
J Environ Manage ; 301: 113769, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600426

RESUMEN

Forests have been undergoing through immense pressure due to the factors like human activities; procurement of forest products and climate change which is a major factor influencing this pressure buildup on forests. Climate change and temperature increase caused by anthropogenic activities have notably affected forests and wildlife on a global scale. High temperature increases the soil-water evaporation, resulting in drier soils, and water loss in forest flora. The incidence of forest fires has doubled since 1984 and these are linked to global warming. Drought influences fuel moisture by bringing about physiological changes in forest vegetation leading to forest fires. Forest resilience is hampered because of temperature and drought stress at the developing stage of plant's life cycle leading to the shift in plant species in those areas. Forest fire incidences can be managed with proper management strategies such as sustainable, community and urban forest management. A careful monitoring of stress precursors, subsistence uses of forests, ecological education and planting of near native and new indigenous plant species are the tools that can aid in efficient forest management.


Asunto(s)
Incendios , Incendios Forestales , Cambio Climático , Sequías , Bosques , Humanos , Árboles
5.
J Environ Manage ; 301: 113893, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634725

RESUMEN

Amongst different climatic and anthropogenic drivers, water resources management can cause massive changes to the natural regime of a lake after its regulation, thereby affecting the quantity and quality of water intended for satisfying the multiple basin water requirements. Here, we investigate the multi-decadal variation of the water levels and outflows of Lake Garda, the largest in Italy, where the dam operational rules and the related basin water needs heavily altered the annual and seasonal trend of the lake regime since its regulation in 1951. Daily lake levels and outflows were first collected and digitized for the period 1888-2020, thus providing a unique database of 133 years that allowed a consistent comparison between natural and regulated periods. Statistical analyses highlighted a significant change of the inter-annual trend of the lake outflows, which passed from upward to downward after regulation, against a constant increasing trend of the water levels. Conversely, water levels showed a more remarkable shifts on a seasonal scale if compared to the outflows, revealing the influence of summer and winter basin water needs. Additional analyses on the inter-annual variation of the main downstream water demands regulated by the dam, i.e. the irrigation, hydropower and fluvial ecosystem requirements, outlined their relevance in changing the lake regime, influencing dam operational policies, which progressively limited the share of water released for ecosystem integrity. A comparison between the lake levels and outflows recorded for the pre-regulation and post-regulation periods of some selected European perialpine lakes finally highlighted different effects on the lake regime, drawing attention to the importance of defining the role of the dam operational policies within the current scenario of climate change and changing water demands.


Asunto(s)
Lagos , Recursos Hídricos , Cambio Climático , Ecosistema , Agua
6.
Sci Total Environ ; 803: 149700, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34487901

RESUMEN

The Eurasian steppe is the largest steppe region in the world and is an important part of the global grassland ecosystem. The eastern Eurasian steppe has favorable hydrothermal conditions and has the highest productivity and the richest biodiversity. Located in the arid and semi-arid region, the eastern Eurasian steppe has experienced large-scale grassland degradation due to dramatic climate change and intensive human activities during the past 20 years. Hence, accurate estimation of aboveground biomass (AGB, gC m-2) and belowground biomass (BGB, gC m-2) is necessary. In this study, plenty of AGB and BGB in-situ measurements were collected among dominated grassland types during summer in 2013 and 2016-2018 in the eastern Eurasian steppe. Vegetation indices from the Moderate Resolution Imaging Spectroradiometer (MODIS), Digital Elevation Model (DEM) and climate variables were chosen as independent variables to establish predictive models for AGB and BGB with random forest (RF). Both AGB (R2 = 0.47, MAE = 21.06 gC m-2, and RMSE = 27.52 gC m-2) and BGB (R2 = 0.44, MAE = 173.02 gC m-2, and RMSE = 244.20 gC m-2) models showed acceptable accuracy. Then the RF models were applied to generate spatially explicit AGB and BGB estimates for the study area over the last two decades (2000-2018). Both AGB and BGB showed higher values in the Greater Khingan Mountains and decreased gradually to the east and west sides. The mean values for AGB and BGB were 62.16 gC m-2 and 531.35 gC m-2, respectively. The climatic factors were much more important in controlling biomass than anthropogenic drivers, and shortage of water and raising temperature were the main limiting factor of AGB and BGB, respectively, in the peak growth season. These findings provide scientific data for the scientific management of animal husbandry and can contribute to the sustainable development of grassland ecology in the eastern Eurasian steppe.


Asunto(s)
Cambio Climático , Ecosistema , Biomasa , Pradera , Humanos , Imágenes Satelitales , Temperatura
7.
Sci Total Environ ; 803: 149810, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34492489

RESUMEN

Two-way feedbacks exist between water-stressed vegetation and agricultural drought. Previous studies have focused mainly on the responses of vegetation to agricultural droughts but rarely on those of agricultural droughts to vegetation. Based on a new drought index (AgDI) that incorporates dynamic climatic and vegetation information, this study evaluated the impacts of climate and vegetation variabilities on agricultural droughts in 20 catchments in southwestern China, a region frequently hit by droughts. Results showed that the drought-stressed vegetation tended to alleviate agricultural droughts, and the drought-alleviating ability of vegetation was affected by vegetation types and the magnitudes of the changes in climate. Compared to other types of vegetation, the natural forest generally has a greater ability to affect agricultural drought. Overall, the relative contribution (mean of 29.9 ± 24.6%) of changes in vegetation to agricultural drought was at least comparable to those of the changes in potential evapotranspiration (mean of 14.4 ± 12.7%). Results also showed that even though vegetation has the ability to alleviate agricultural droughts, the changes in agricultural droughts were still dominated by climate changes, especially precipitation (mean relative contribution of 55.7 ± 24.2%).


Asunto(s)
Sequías , Bosques , Agricultura , Cambio Climático , Agua
8.
Sci Total Environ ; 803: 149622, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34496346

RESUMEN

Global ocean warming, wave extreme events, and accelerating sea-level rise are challenges that coastal communities must address to anticipate damages in coming decades. The objective of this study is to undertake a time-series analysis of climate change (CC) indicators within the Bay of Biscay, including the Basque coast. We used an integrated and flexible methodology, based on Generalized Additive Mixed Models, to detect trends on 19 indicators (including marine physics, chemistry, atmosphere, hydrology, geomorphology, biodiversity, and commercial species). The results of 87 long-term time series analysed (~512,000 observations), in the last four decades, indicate four groups of climate regime shifts: 1) A gradual shift associated with CC starting in the 1980s, with a warming of the sea surface down to 100 m depth in the bay (0.10-0.25 °C per decade), increase in air temperature and insolation. This warming may have impacted on benthic community redistribution in the Basque coast, favouring warm-water species relative to cold-water species. Weight at age for anchovy and sardine decreased in the last two decades. 2) Deepening of the winter mixed layer depth in the south-eastern bay that probably led to increases in nutrients, surface oxygen, and chlorophyll concentration. Current increases on chlorophyll and zooplankton (i.e., copepods) biomass are contrary to those expected under CC scenarios in the region. 3) Sea-level rise (1.5-3.5 cm per decade since 1990s), associated with CC. 4) Increase of extreme wave height events of 16.8 cm per decade in the south-eastern bay, probably related to stormy conditions in the last decade, with impacts on beach erosion. Estimating accurate rates of sea warming, sea-level rise, extreme events, and foreseeing the future pathways of marine productivity, are key to define the best adaptation measures to minimize negative CC impacts in the region.


Asunto(s)
Bahías , Biodiversidad , Animales , Biomasa , Cambio Climático , Ecosistema , Zooplancton
9.
Sci Total Environ ; 803: 149828, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34500272

RESUMEN

Transboundary river basins across developing countries, such as the Lower Mekong River Basin (LMB), are challenging to manage given frequent divergences on development and conservation priorities. Driven by needs to sustain economic performance and reduce poverty, the LMB countries are embarking on significant land use changes in the form of more hydropower dams, to satisfy growing energy demands. This pathway could lead to irreversible changes to the ecosystem of the Mekong River, if not properly managed. Given the uncertain environmental externalities and trade-offs associated with further hydropower development and operation in the LMB, this research develops four plausible scenarios of future hydropower operation, and assesses their likely impact on streamflow and instream total suspended solids and nitrate loads of the Mekong River. The findings suggest that further hydropower operations on either tributary or mainstream could result in annual and wet season flow reduction between 11 and 25% while increase dry season flows by 1 to 15%, when compared to a business-as-usual scenario. Conversely, hydropower operation on both tributary and mainstream could result in dry season flow reduction between 10 and 15%. Both instream TSS and nitrate loads are forecasted to reduce under all three scenarios by as much as 78 and 20%, respectively, compared to the business-as-usual one. These effects are predicted to magnify under extreme climate conditions with dry season flow, TSS, and nitrate levels reduced by as much as 44, 81 and 35%, respectively, during a projected extreme dry climate condition, but less severe under improved operational alternatives. With further hydropower development in the LMB being highly unavoidable, these findings can inform effective transboundary management pathways for balancing electricity generation and protection of riverine ecology, water and food security, and people livelihoods.


Asunto(s)
Ecosistema , Ríos , Clima , Cambio Climático , Humanos , Nitratos
10.
Sci Total Environ ; 803: 149864, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34500282

RESUMEN

Understanding the distribution of hyperaccumulators helps to implement more efficient phytoremediation strategies of contaminated sites, however, limited information is available. Here, we investigated the geographical distribution of the first-known arsenic-hyperaccumulator Pteris vittata in China and the key factors under two climate change scenarios (SSP 1-2.6 and SSP 5-8.5) at two time points (2030 and 2070). Species distribution model (MaxEnt) was applied to examine P. vittata distribution based on 399 samples from field surveys and existing specimen records. Further, among 23 environmental factors, 11 variables were used in the MaxEnt model, including temperature, precipitation, elevation, soil property, and UV-B radiation. The results show that P. vittata can grow in ~23% of the regions in China. Specifically, it is mainly distributed in 11 provinces of southern China, including Hainan, Guangdong, Guangxi, Yunnan, Guizhou, Hunan, Hubei, Jiangxi, Fujian, Zhejiang, and Jiangsu. Besides, eastern Sichuan, and southern Henan, Shaanxi, and Anhui are suitable for P. vittata growth. Under two climate change scenarios, P. vittata distribution in China would decrease by ~5.76-7.46 × 104 km2 in 2030 and ~3.22-4.68 × 104 km2 in 2070, with southern Henan and most Jiangsu being unsuitable for P. vittata growth. Among the 11 environmental variables, the minimum temperature of coldest month (bio6) and temperature annual range (bio7) are the two key factors limiting P. vittata distribution. At bio6 <-5 °C and/or bio7 >33 °C, the regions are unsuitable for P. vittata growth. Based on the MaxEnt model, precipitation had limited effects, so P. vittata can probably survive under both dry and moist environments. This study helps guide phytoremediation of As-polluted soils using P. vittata and provides an example to evaluate habitat suitability of hyperaccumulators at international scales.


Asunto(s)
Arsénico , Pteris , Contaminantes del Suelo , Arsénico/análisis , Biodegradación Ambiental , China , Cambio Climático , Contaminantes del Suelo/análisis
11.
Handb Exp Pharmacol ; 268: 367-390, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34196809

RESUMEN

The prevalence of allergic diseases is increasing rapidly and has already reached an epidemic level. Two major drivers of this development are climate change and globalization, which both induce an increase in allergens. Concomitant climate change fosters the spreading of the latter on a global scale. The increase in allergens not only aggravates the symptoms and the degree of suffering for patients who already are allergic, but also gives rise to new cases of allergies. The distribution of allergies in society follows a steep socioeconomic gradient worldwide. According to well-established theories of justice such a distribution of the allergy burden is unfair. This fact adds a major ethical dimension and challenge to the allergy epidemic. This chapter draws on the key points of policies for allergy prevention and treatment. It shows how related programs and measures can be conceptualized and prioritized according to the principles of distributional justice.


Asunto(s)
Hipersensibilidad , Polen , Alérgenos , Cambio Climático , Humanos , Hipersensibilidad/epidemiología , Internacionalidad
12.
J Environ Manage ; 301: 113884, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34607140

RESUMEN

Allocation of water over its six dimensions of quantity, quality, timing, location, price, and cost remains an ongoing challenge facing water resource planning worldwide. This challenge is magnified with growing evidence of climate change and related water supply stressors. This stress will challenge food, energy, and water systems as climate adaptation policy measures see continued debate. Despite numerous achievements made many by previous works, few attempts have scanned the literature on economic optimization analysis for water resources planning to discover affordable climate adaptation measures. This paper aims to fill that gap by reviewing the literature on water resource optimization analysis at the basin scale to guide discovery of affordable climate adaptation measures. It does so by posing the question "What principles, practices, and recent developments are available to guide discovery of policy measures to improve water resource system adaptions to growing evidence of climate water stress?" It describes past achievements and identifies improvements needed for optimization analysis to inform policy debates for crafting plans to improve climate resilience. It describes an economic conceptual framework as well as identifying data needs for conducting economic optimization exercises to support river basin planning faced by the challenge of managing the six water dimensions described above. It presents an example from an ongoing issue facing water planners in the Middle East. Conclusions find considerable utility in the use of economic optimization exercises to guide climate water stressadaptation. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.


Asunto(s)
Cambio Climático , Recursos Hídricos , Abastecimiento de Agua , Ríos
13.
J Environ Manage ; 301: 113776, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34619587

RESUMEN

Agricultural landscapes are the leading edge in the advancement of sustainability and climate change adaptation. The purpose of this study is to endogenize culture as shaped by natural-cultural feedback into individuals' decision-making processes on sustainability policy support. We present an agent-based model in which an adaptive cultural decision-rule quantifies the probability of an agent deciding to support a wildlife area policy for the Smoky Hill River Watershed (SHRW) in Kansas, USA. By using an ABM to examine the watershed as a coupled natural and human system, we learned that agents would adopt a new behavior, voting for the policy, if the cultural conditions were right, with high levels of beliefs and norms for freshwater and its biota. Our results indicate that individuals in the SHRW are not engaged in caring for fish, plants, and bird richness in their rivers and playas with few individuals supporting the policy in the naïve cultural setting (8.9 % of simulated population). However, enough agents would support the policy under a lower cultural threshold (40.7 % of simulated population). Our results show that sustainability policies need to account for the local culture to gain support, and if a policy is culturally meaningful, it does not need to be cheap. For an agricultural landscape, such as those commonly found in the Central Great Plains, this study presents new levers for policymakers on the conditions needed to help assemble popular support for sustainability policies.


Asunto(s)
Agricultura , Cambio Climático , Conservación de los Recursos Naturales , Animales , Agua Dulce , Humanos , Políticas , Ríos
14.
Sci Total Environ ; 803: 150065, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34525713

RESUMEN

Climate change is a severe global threat. Research on climate change and vulnerability to natural hazards has made significant progress over the last decades. Most of the research has been devoted to improving the quality of climate information and hazard data, including exposure to specific phenomena, such as flooding or sea-level rise. Less attention has been given to the assessment of vulnerability and embedded social, economic and historical conditions that foster vulnerability of societies. A number of global vulnerability assessments based on indicators have been developed over the past years. Yet an essential question remains how to validate those assessments at the global scale. This paper examines different options to validate global vulnerability assessments in terms of their internal and external validity, focusing on two global vulnerability indicator systems used in the WorldRiskIndex and the INFORM index. The paper reviews these global index systems as best practices and at the same time presents new analysis and global results that show linkages between the level of vulnerability and disaster outcomes. Both the review and new analysis support each other and help to communicate the validity and the uncertainty of vulnerability assessments. Next to statistical validation methods, we discuss the importance of the appropriate link between indicators, data and the indicandum. We found that mortality per hazard event from floods, drought and storms is 15 times higher for countries ranked as highly vulnerable compared to those classified as low vulnerable. These findings highlight the different starting points of countries in their move towards climate resilient development. Priority should be given not just to those regions that are likely to face more severe climate hazards in the future but also to those confronted with high vulnerability already.


Asunto(s)
Cambio Climático , Desastres , Adaptación Fisiológica , Inundaciones , Humanos , Elevación del Nivel del Mar
15.
Sci Total Environ ; 802: 149651, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34525747

RESUMEN

Forest disturbances alter land biophysics. Their impacts on local climate and land surface temperature (LST) cannot be directly measured by comparing pre- and post-disturbance observations of the same site over time (e.g., due to confounding such as background climate fluctuations); a common remedy is to compare spatially-adjacent undisturbed sites instead. This space-for-time substitution ignores the inherent biases in vegetation between two paired sites, interannual variations, and temporal dynamics of forest recovery. Besides, there is a lack of observation-based analyses at fine spatial resolutions capable of capturing spatial heterogeneity of small-scale forest disturbances. To address these limitations, here we report new satellite analyses on local climate impacts of forest loss at 30 m resolution. Our analyses combined multiple long-term satellite products (e.g., albedo and evapotranspiration [ET]) at 700 sites across major climate zones in the conterminous United States, using time-series trend and changepoint detection methods. Our method helped isolate the biophysical changes attributed to disturbances from those attributed to climate backgrounds and natural growth. On average, forest loss increased surface albedo, decreased ET, and reduced leaf area index (LAI). Net annual warming-an increase in LST-was observed after forest loss in the arid/semiarid, northern, tropical, and temperate regions, dominated by the warming from decreased ET and attenuated by the cooling from increased albedo. The magnitude of post-disturbance warming was related to precipitation; climate zones with greater precipitation showed stronger and longer warming. Reduction in leaf or LAI was larger in evergreen than deciduous forests, but the recovery in LAI did not always synchronize with those of albedo and ET. Overall, this study presents new evidence of biophysical effects of forest loss on LST at finer spatial resolutions; our time-series method can be further leveraged to derive local policy-relevant ecosystem climate regulation metrics or support model-based climate-biosphere studies.


Asunto(s)
Cambio Climático , Ecosistema , Clima , Bosques , Temperatura , Estados Unidos
16.
Sci Total Environ ; 802: 149807, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34450439

RESUMEN

It is expected that by 2050 human population will exceed nine billion leading to increased pressure on marine ecosystems. Therefore, it is conjectured various levels of ecosystem functioning starting from individual to population-level, species distribution, food webs and trophic interaction dynamics will be severely jeopardized in coming decades. Ocean warming and acidification are two prime threats to marine biota, yet studies about their cumulative effect on marine fish and shellfishes are still in its infancy. This review assesses existing information regarding the interactive effects of global environmental factors like warming and acidification in the perspective of marine capture fisheries and aquaculture industry. As climate change continues, distribution pattern of species is likely to be altered which will impact fisheries and fishing patterns. Our work is an attempt to compile the existing literatures in the biological perspective of the above-mentioned stressors and accentuate a clear outline of knowledge in this subject. We reviewed studies deciphering the biological consequences of warming and acidification on fish and shellfishes in the light of a molecule to ecosystem perspective. Here, for the first time impacts of these two global environmental drivers are discussed in a holistic manner taking into account growth, survival, behavioural response, prey predator dynamics, calcification, biomineralization, reproduction, physiology, thermal tolerance, molecular level responses as well as immune system and disease susceptibility. We suggest urgent focus on more robust, long term, comprehensive and ecologically realistic studies that will significantly contribute to the understanding of organism's response to climate change for sustainable capture fisheries and aquaculture.


Asunto(s)
Ecosistema , Agua de Mar , Animales , Cambio Climático , Calentamiento Global , Humanos , Concentración de Iones de Hidrógeno , Océanos y Mares , Mariscos
17.
Sci Total Environ ; 802: 149542, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34454138

RESUMEN

The alpine area of the Australian mainland is highly sensitive to climate and environmental change, and potentially vulnerable to ecosystem tipping points. Over the next two decades the Australian alpine region is predicted to experience temperature increases of at least 1 °C, coupled with a substantial decrease in snow cover. Extending the short instrumental record in these regions is imperative to put future change into context, and potentially provide analogues of warming. We reconstructed past temperatures, using a lipid biomarker palaeothermometer technique and mercury flux changes for the past 3500 years from the sediments of Club Lake, a high-altitude alpine tarn in the Snowy Mountains, southeastern Australia. Using a multi-proxy framework, including pollen and charcoal analyses, high-resolution geochemistry, and ancient microbial community composition, supported by high-resolution 210Pb and AMS 14C dating, we investigated local and regional ecological and environmental changes occurring in response to changes in temperature. We find the region experienced a general warming trend over the last 3500 years, with a pronounced climate anomaly occurring between 1000 and 1600 cal yrs. BP. Shifts in vegetation took place during this warm period, characterised by a decline in alpine species and an increase in open woodland taxa which co-occurred with an increase in regional fire activity. Given the narrow altitudinal band of Australian alpine vegetation, any future warming has the potential to result in the extinction of alpine species, including several endemic to the area, as treelines are driven to higher elevations. These findings suggest ongoing conservation efforts will be needed to protect the vulnerable alpine environments from the combined threats of climate changes, fire and invasive species.


Asunto(s)
Ecosistema , Incendios , Australia , Cambio Climático , Bosques
18.
Sci Total Environ ; 802: 149643, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34461482

RESUMEN

Southwest China is an important biodiversity hotspot in the world and is controlled by the Pacific and Indian Ocean monsoon in the east and west part respectively. However, how abiotic and biotic factors affect the response of vegetation to climate change in different monsoon regions is still not clear. Here we used the annual change rate of growing-season normalized difference vegetation index (NDVI trend) during 1982-2015 to explore the vulnerability of vegetation (forests and shrubs) activity to climate change in southwest China. We examined NDVI trend in relation to: 1) climate change trends, i.e. annual change rate of water and energy availability, indicated by the Palmer Drought Index (PDSI) and potential evapotranspiration (PET), respectively; 2) climatic condition, i.e. mean PDSI and PET during 1982-2015; 3) vegetation height; 4) biome type; 5) monsoon region. The results showed that NDVI generally increased in the Pacific monsoon region, especially in the southern areas, probably because the vegetation under more productive climate were more resistant to climate change, and also because decreased temperature lead to lower evapotranspiration which alleviated the slight drought trend in this region. In contrast, NDVI generally decreased in the Indian Ocean monsoon region which showed more pronounced drought trend, especially in the tall subalpine and tropical forests of Southeast Tibetan Mountains, which supports the "hydraulic limitation hypothesis" that vegetation height interacted with climate change in affecting vegetation vulnerability. Our analysis highlighted the critical roles of different monsoon systems, climate condition and vegetation height in affecting ecosystem vulnerability. We suggest that the (sub)tropical forests in the Pacific monsoon region may have act as an important carbon sink during the past decades, while the tall forests in Southeast Tibetan mountains (a biodiversity center with high carbon stock) are highly vulnerable to climate change and should have priority in ecosystem protection.


Asunto(s)
Cambio Climático , Ecosistema , China , Sequías , Bosques
19.
Sci Total Environ ; 802: 149787, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34464796

RESUMEN

This study aimed to determine the effect of the climatic change on the phototrophic communities of hypersaline microbial mats. Ocean acidification and warming were simulated alone and together on microbial mats placed into mesocosms. As expected, the temperature in the warming treatments increased by 4 °C from the initial temperature. Surprisingly, no significance difference was observed between the water pH of the different treatments despite of a decrease of 0.4 unit pH in the water reserves of acidification treatments. The salinity increased on the warming treatments and the dissolved oxygen concentration increased and was higher on the acidification treatments. A total of 37 pigments were identified belonging to chlorophylls, carotenes and xanthophylls families. The higher abundance of unknown chlorophyll molecules called chlorophyll derivatives was observed in the acidification alone treatment with a decrease in chlorophyll a abundance. This change in pigmentary composition was accompanied by a higher production of bound extracellular carbohydrates but didn't affect the photosynthetic efficiency of the microbial mats. A careful analysis of the absorption properties of these molecules indicated that these chlorophyll derivatives were likely bacteriochlorophyll c contained in the chlorosomes of green anoxygenic phototroph bacteria. Two hypotheses can be drawn from these results: 1/ the phototrophic communities of the microbial mats were modified under acidification treatment leading to a higher relative abundance of green anoxygenic bacteria, or 2/ the highest availability of CO2 in the environment has led to a shift in the metabolism of green anoxygenic bacteria being more competitive than other phototrophs.


Asunto(s)
Bacterioclorofilas , Cambio Climático , Clorofila , Clorofila A , Humanos , Concentración de Iones de Hidrógeno , Agua de Mar
20.
Sci Total Environ ; 804: 150099, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34517321

RESUMEN

Investigating the effects of the increased global warming through the lens of the Paris agreements would be of particular importance for Central African countries, which are already experiencing multiple socio-political and socio-economic constraints, but are also subject to severe natural hazards that interact to limit their adaptive capacity and thus increase their vulnerability to the adverse effects of climate change. This study explores changes in heat stress and the proportion of population at risk of discomfort over Central Africa, based on an ensemble-mean of high-resolution regional climate model simulations that cover a 30-year period, under 1.5, 2 and 3 °C Global Warming Levels (GWLs). The heat index was computed according to Rothfusz's equation, while the discomfort index was obtained from Thom's formula. The results show that throughout the year but with a predominance from March to August, the spatial extent of both heat and discomfort categories is projected to gradually increase according to the considered GWLs (nearly threefold for an increasing warming thresholds from 1.5 to 3 °C). As these heat conditions become more frequent, they lead to the emergence of days with potentially dangerous heat-related risks, where almost everyone feels discomfort due to heat stress. It thus appears that the majority of populations living in countries located along the Atlantic coast and in the northern and central part of the study area are likely to be more vulnerable to certain health problems, which could have repercussions on the socio-economic development of the sub-region through decreased workers' productivity and increased cooling degree days. Overall, these heat-related risks are more extended and more frequent when the GWL reaches 2 °C and above.


Asunto(s)
Calentamiento Global , Trastornos de Estrés por Calor , África Central , Cambio Climático , Frío , Trastornos de Estrés por Calor/epidemiología , Trastornos de Estrés por Calor/etiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...