Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.709
Filtrar
1.
Sci Total Environ ; 926: 172122, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38569973

RESUMEN

Photodegradation via ultraviolet (UV) radiation is an important factor driving plant litter decomposition. Despite increasing attention to the role of UV photodegradation in litter decomposition, the specific impact of UV radiation on the plant litter decomposition stage within biogeochemical cycles remains unclear at regional and global scales. To clarify the variation rules of magnitude of UV effect on plant litter decomposition and their regulatory factors, we conducted a meta-analysis based on 54 published papers. Our results indicated that UV significantly promoted the mass loss of litter by facilitating decay of carbonaceous fractions and release of nitrogen and phosphorus. The promotion effect varied linearly or non-linearly with the time that litter exposed to UV, and with climatic factors. The UV effect on litter decomposition decreased first than increased on precipitation and temperature gradients, reaching its minimum in the area with a precipitation of 400-600 mm, and a temperature of 15-20 °C. This trend might be attributed to a potential equilibrium between the photofacilitation and photo-inhibition effects of UV under this condition. This variation in UV effect on precipitation gradient was in agreement with the fact that UV photodegradation effect was weakest in grassland ecosystems compared to that in forest and desert ecosystems. In addition, initial litter quality significantly influenced the magnitude of UV effect, but had no influence on the correlation between UV effect and climate gradient. Litter with lower initial nitrogen and lignin content shown a greater photodegradation effect, whereas those with higher hemicellulose and cellulose content had a greater photodegradation effect. Our study provides a comprehensive understanding of photodegradation effect on plant litter decomposition, indicates potentially substantial impacts of global enhancements of litter decomposition by UV, and highlights the necessity to quantify the contribution of photochemical minerallization pathway and microbial degradation pathway in litter decomposition.


Asunto(s)
Ecosistema , Rayos Ultravioleta , Hojas de la Planta/metabolismo , Plantas/metabolismo , Clima Desértico , Nitrógeno/metabolismo
2.
BMC Med ; 22(1): 159, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616276

RESUMEN

BACKGROUND: Long covid (post covid-19 condition) is a complex condition with diverse manifestations, uncertain prognosis and wide variation in current approaches to management. There have been calls for formal quality standards to reduce a so-called "postcode lottery" of care. The original aim of this study-to examine the nature of quality in long covid care and reduce unwarranted variation in services-evolved to focus on examining the reasons why standardizing care was so challenging in this condition. METHODS: In 2021-2023, we ran a quality improvement collaborative across 10 UK sites. The dataset reported here was mostly but not entirely qualitative. It included data on the origins and current context of each clinic, interviews with staff and patients, and ethnographic observations at 13 clinics (50 consultations) and 45 multidisciplinary team (MDT) meetings (244 patient cases). Data collection and analysis were informed by relevant lenses from clinical care (e.g. evidence-based guidelines), improvement science (e.g. quality improvement cycles) and philosophy of knowledge. RESULTS: Participating clinics made progress towards standardizing assessment and management in some topics; some variation remained but this could usually be explained. Clinics had different histories and path dependencies, occupied a different place in their healthcare ecosystem and served a varied caseload including a high proportion of patients with comorbidities. A key mechanism for achieving high-quality long covid care was when local MDTs deliberated on unusual, complex or challenging cases for which evidence-based guidelines provided no easy answers. In such cases, collective learning occurred through idiographic (case-based) reasoning, in which practitioners build lessons from the particular to the general. This contrasts with the nomothetic reasoning implicit in evidence-based guidelines, in which reasoning is assumed to go from the general (e.g. findings of clinical trials) to the particular (management of individual patients). CONCLUSION: Not all variation in long covid services is unwarranted. Largely because long covid's manifestations are so varied and comorbidities common, generic "evidence-based" standards require much individual adaptation. In this complex condition, quality improvement resources may be productively spent supporting MDTs to optimise their case-based learning through interdisciplinary discussion. Quality assessment of a long covid service should include review of a sample of individual cases to assess how guidelines have been interpreted and personalized to meet patients' unique needs. STUDY REGISTRATION: NCT05057260, ISRCTN15022307.


Asunto(s)
COVID-19 , Mejoramiento de la Calidad , Humanos , COVID-19/terapia , Ecosistema , Síndrome Post Agudo de COVID-19 , Antropología Cultural
3.
PLoS One ; 19(4): e0300007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38573927

RESUMEN

The COVID-19 pandemic led to the closure of educational campuses and the suspension of conventional classroom teaching globally and locally, and many switched overnight to an online modality. The change was experienced differently by varied audiences, given the availability of resources. The study aimed to examine stakeholders' experiences of emergency remote instructions in the Post-RN Baccalaureate Nursing Program during the COVID-19 pandemic. A qualitative descriptive exploratory design with a purposive sampling technique was used at a private nursing university in Karachi, Pakistan. Focus group discussions with students and faculty were conducted separately, while in-depth interviews with key informants were held using semi-structured interview guides. The focus group discussions and in-depth interviews were recorded electronically and transcribed and translated, coded, and analysed manually. Findings uncovered two major themes. (a) Remote teaching and learning-a paradigm shift; and (b) Remote learning ecosystem-a challenging team sport. The first theme denotes a major shift in pedagogical approach migrating from blended learning model to a complete online modality. Theme two uncovers the efforts and teamwork of the various stakeholders who assisted in mitigating the challenges collaboratively when migrating to virtual learning environment. Findings suggest that to continue to thrive in the post-COVID world, faculty, students, and key informants must collegially enhance the teaching, learning, and assessment strategies and student-teacher interaction, capitalising on evidence-based practices, trial and error, multi-level support mechanisms, and partnerships. The study recommends building resilience in instructional and administrative infrastructure to prepare for future events like pandemics and suggests development of evidence-informed blended and online nursing programmes in the region.


Asunto(s)
COVID-19 , Estudiantes de Enfermería , Humanos , Pandemias , COVID-19/epidemiología , Ecosistema , Investigación Cualitativa
4.
Chemosphere ; 355: 141900, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579953

RESUMEN

The COVID-19 pandemic during 2020-2023 has wrought adverse impacts on coastal and marine environments. This study conducts a comprehensive review of the collateral effects of COVID-19 on these ecosystems through literature review and bibliometric analysis. According to the output and citation analysis of these publications, researchers from the coastal countries in Asia, Europe, and America payed more attentions to this environmental issue than other continents. Specifically, India, China, and USA were the top three countries in the publications, with the proportion of 19.55%, 18.99%, and 12.01%, respectively. The COVID-19 pandemic significantly aggravated the plastic and microplastic pollution in coastal and marine environments by explosive production and unproper management of personal protective equipment (PPE). During the pandemic, the estimated mismanaged PPE waste ranged from 16.50 t/yr in Sweden to 250,371.39 t/yr in Indonesia. In addition, the PPE density ranged from 1.13 × 10-5 item/m2 to 2.79 item/m2 in the coastal regions worldwide, showing significant geographical variations. Besides, the emerging contaminants released from PPE into the coastal and marine environments cannot be neglected. The positive influence was that the COVID-19 lockdown worldwide reduced the release of air pollutants (e.g., fine particulate matter, NO2, CO, and SO2) and improved the air quality. The study also analyzed the relationships between sustainable development goals (SDGs) and the publications and revealed the dynamic changes of SDGs in different periods the COVID-19 pandemic. In conclusion, the air was cleaner due to the lockdown, but the coastal and marine contamination of plastic, microplastic, and emerging contaminants got worse during the COVID-19 pandemic. Last but not least, the study proposed four strategies to deal with the coastal and marine pollution caused by COVID-19, which were regular marine monitoring, performance of risk assessment, effective regulation of plastic wastes, and close international cooperation.


Asunto(s)
Contaminación del Aire , COVID-19 , Humanos , COVID-19/epidemiología , Microplásticos , Plásticos , Pandemias , Ecosistema , Monitoreo del Ambiente , Control de Enfermedades Transmisibles , Contaminación del Aire/análisis
5.
Environ Monit Assess ; 196(5): 441, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598137

RESUMEN

Since treelines are generally fire-free, the trees growing there are expected to have thin bark, unless adaptation to other factors than fire results in the selection of a thick bark. Related to this is also higher proportional investment in inner bark in such an environment of infrequent fire. This study has considered stem bark thickness both in absolute and relative terms and also in the frame of the composition of outer and inner bark components of 20 tree species along an elevation transect (2100-3300 m) in high ranges of the Central Himalaya leading to treelines. The study species varied from 2.1 to 16.2 mm for total bark thickness and from 1.2 to 18.85% for relative bark thickness. The average absolute total bark thickness across the tree species decreased with elevation from forest to treeline, both when trees of all diameters (10.2 ± 0.84 mm for forest and 6.9 ± 1.79 mm for treeline) and those of the same stem diameter range (18-20 m) were compared (9.10 ± 1.30 mm for forest species and 6.38 ± 1.31 mm for treeline species). Nevertheless, the treeline bark thickness was similar to those of several forest communities considered to have comparatively thick bark. Like many other biological structures, bark carries out multiple functions; therefore, its thickness could be affected by more than one environmental factor. We suggest that the requirement of mechanical resistance to the snowfall, rainstorms, wind and adaptation to a high sunlight and UV radiations or storage of water, and non-structural carbohydrates could affect total, outer and inner bark thickness. Studies on these aspects in similar ecosystems may help understand the multi-functional attributes of the bark. For trees of comparable sizes (trees with 18-20 cm diameter at breast height) treeline species also had lower relative bark thickness (< 6%) than trees of forest below it (> 7%). The median proportion of inner bark of the total bark (70.5%) for our 20 species was more than that for savannas (~ 50%), exposed to frequent fire regime and similar to those of in cool sclerophyllous forests and temperate rain forests where fire return time is > 100 years. However, it was lower than the inner bark proportion reported for tropical rain forests. To conclude, in spite of a fire-free environment, the Himalayan treeline and adjoining forest species show mixed bark characters.


Asunto(s)
Ecosistema , Árboles , 60479 , Corteza de la Planta , Monitoreo del Ambiente
6.
Glob Health Action ; 17(1): 2325726, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38577879

RESUMEN

Increasing evidence suggests that urban health objectives are best achieved through a multisectoral approach. This approach requires multiple sectors to consider health and well-being as a central aspect of their policy development and implementation, recognising that numerous determinants of health lie outside (or beyond the confines of) the health sector. However, collaboration across sectors remains scarce and multisectoral interventions to support health are lacking in Africa. To address this gap in research, we conducted a mixed-method systematic review of multisectoral interventions aimed at enhancing health, with a particular focus on non-communicable diseases in urban African settings. Africa is the world's fastest urbanising region, making it a critical context in which to examine the impact of multisectoral approaches to improve health. This systematic review provides a valuable overview of current knowledge on multisectoral urban health interventions and enables the identification of existing knowledge gaps, and consequently, avenues for future research. We searched four academic databases (PubMed, Scopus, Web of Science, Global Health) for evidence dated 1989-2019 and identified grey literature from expert input. We identified 53 articles (17 quantitative, 20 qualitative, 12 mixed methods) involving collaborations across 22 sectors and 16 African countries. The principle guiding the majority of the multisectoral interventions was community health equity (39.6%), followed by healthy cities and healthy urban governance principles (32.1%). Targeted health outcomes were diverse, spanning behaviour, environmental and active participation from communities. With only 2% of all studies focusing on health equity as an outcome and with 47% of studies published by first authors located outside Africa, this review underlines the need for future research to prioritise equity both in terms of research outcomes and processes. A synthesised framework of seven interconnected components showcases an ecosystem on multisectoral interventions for urban health that can be examined in the future research in African urban settings that can benefit the health of people and the planet.Paper ContextMain findings: Multisectoral interventions were identified in 27.8% of African countries in the African Union, targeted at major cities with five sectors present at all intervention stages: academia or research, agriculture, government, health, and non-governmental.Added knowledge: We propose a synthesised framework showcasing an ecosystem on multisectoral interventions for urban health that can guide future research in African urban settings.Global health impact for policy and action: This study reveals a crucial gap in evidence on evaluating the long-term impact of multisectoral interventions and calls for partnerships involving various sectors and robust community engagement to effectively deliver and sustain health-promoting policies and actions.


Asunto(s)
Ecosistema , Salud Urbana , Humanos , Ciudades , Política de Salud , África
7.
J Ethnobiol Ethnomed ; 20(1): 41, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575934

RESUMEN

BACKGROUND: The complex interplay of social and environmental factors shapes ecosystems, potentially leading to harmony or conflict, highlighting the importance of understanding these dynamics for coexistence. In developing countries, firewood serves as a primary energy source and plays a role in cultural-religious rituals and festivities. However, the specific patterns of woody species used for the latter remain poorly understood, including the impact of access restrictions to resources and local bans on practices. Therefore, our research focuses on examining how access restrictions to forest resources and bonfire bans due to the coronavirus disease 2019 (COVID-19) impact the cultural-religious tradition of bonfire making during Festas Juninas (June festivities) in northeastern Brazil. METHODS: Ethnobotanical fieldwork was conducted in two rural populations in northeastern Brazil between 2021 and 2022. Data were collected through semi-structured interviews, observations, and the guided tour technique. The cultural-religious tradition of bonfire making (i.e., richness of native and exotic firewood species, firewood volume, and the number of bonfires related to this practice) was compared between populations (i.e., differing in access restrictions) and years (i.e., differing in COVID-19-related bans) using Mann-Whitney U tests. RESULTS: Results revealed significant differences in the richness of native (p value = 0.001) and exotic (p value < 0.001) firewood species for bonfire making due to access restrictions to forest resources. The number of native species used was higher among the population residing in the area with unrestricted access than among those with restricted access, while a greater number of exotic species was used in the population with restricted access. The rest of the variables were not influenced by access restrictions, and no variables were influenced by COVID-19 bans. CONCLUSIONS: Our study demonstrated that access restrictions to forest resources, rather than COVID-19 bans, drive the selection of firewood species for bonfires during Festas Juninas in northeastern Brazil. In addition, as populations remain deeply entrenched in cultural-religious practices amid temporary bans imposed by health crises, there is a pressing need for culturally sensitive environmental policies. Fostering socio-ecological resilience demands a comprehensive approach that encompasses not only environmental factors but also cultural dimensions, which wield a pivotal influence on long-term sustainability.


Asunto(s)
COVID-19 , Ecosistema , Humanos , Brasil , Bosques , Etnobotánica
8.
Planta ; 259(5): 111, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578466

RESUMEN

MAIN CONCLUSION: The combined photoinhibitory and PSII-reaction centre quenching against light stress is an important mechanism that allows the green macroalga Ulva rigida to proliferate and form green tides in coastal ecosystems. Eutrophication of coastal ecosystems often stimulates massive and uncontrolled growth of green macroalgae, causing serious ecological problems. These green tides are frequently exposed to light intensities that can reduce their growth via the production of reactive oxygen species (ROS). To understand the physiological and biochemical mechanisms leading to the formation and maintenance of green tides, the interaction between inorganic nitrogen (Ni) and light was studied. In a bi-factorial physiological experiment simulating eutrophication under different light levels, the bloom-forming green macroalga Ulva rigida was exposed to a combination of ecologically relevant nitrate concentrations (3.8-44.7 µM) and light intensities (50-1100 µmol photons m-2 s-1) over three days. Although artificial eutrophication (≥ 21.7 µM) stimulated nitrate reductase activity, which regulated both nitrate uptake and vacuolar storage by a feedback mechanism, nitrogen assimilation remained constant. Growth was solely controlled by the light intensity because U. rigida was Ni-replete under oligotrophic conditions (3.8 µM), which requires an effective photoprotective mechanism. Fast declining Fv/Fm and non-photochemical quenching (NPQ) under excess light indicate that the combined photoinhibitory and PSII-reaction centre quenching avoided ROS production effectively. Thus, these mechanisms seem to be key to maintaining high photosynthetic activities and growth rates without producing ROS. Nevertheless, these photoprotective mechanisms allowed U. rigida to thrive under the contrasting experimental conditions with high daily growth rates (12-20%). This study helps understand the physiological mechanisms facilitating the formation and persistence of ecologically problematic green tides in coastal areas.


Asunto(s)
Chlorophyta , 60578 , Algas Marinas , Ulva , Ecosistema , Nitratos , Especies Reactivas de Oxígeno , Nitrógeno
9.
PLoS One ; 19(4): e0300503, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38578779

RESUMEN

Plastic materials, including microplastics, accumulate in all types of ecosystems, even in remote and cold environments such as the European Alps. This pollution poses a risk for the environment and humans and needs to be addressed. Using shotgun DNA metagenomics of soils collected in the eastern Swiss Alps at about 3,000 m a.s.l., we identified genes and their proteins that potentially can degrade plastics. We screened the metagenomes of the plastisphere and the bulk soil with a differential abundance analysis, conducted similarity-based screening with specific databases dedicated to putative plastic-degrading genes, and selected those genes with a high probability of signal peptides for extracellular export and a high confidence for functional domains. This procedure resulted in a final list of nine candidate genes. The lengths of the predicted proteins were between 425 and 845 amino acids, and the predicted genera producing these proteins belonged mainly to Caballeronia and Bradyrhizobium. We applied functional validation, using heterologous expression followed by enzymatic assays of the supernatant. Five of the nine proteins tested showed significantly increased activities when we used an esterase assay, and one of these five proteins from candidate genes, a hydrolase-type esterase, clearly had the highest activity, by more than double. We performed the fluorescence assays for plastic degradation of the plastic types BI-OPL and ecovio® only with proteins from the five candidate genes that were positively active in the esterase assay, but like the negative controls, these did not show any significantly increased activity. In contrast, the activity of the positive control, which contained a PLA-degrading gene insert known from the literature, was more than 20 times higher than that of the negative controls. These findings suggest that in silico screening followed by functional validation is suitable for finding new plastic-degrading enzymes. Although we only found one new esterase enzyme, our approach has the potential to be applied to any type of soil and to plastics in various ecosystems to search rapidly and efficiently for new plastic-degrading enzymes.


Asunto(s)
Metagenoma , Suelo , Humanos , Ecosistema , Plásticos , Esterasas/genética
10.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612486

RESUMEN

Mites are highly prevalent arthropods that infest diverse ecological niches globally. Approximately 55,000 species of mites have been identified but many more are yet to be discovered. Of the ones we do know about, most go unnoticed by humans and animals. However, there are several species from the Acariformes superorder that exert a significant impact on global human health. House dust mites are a major source of inhaled allergens, affecting 10-20% of the world's population; storage mites also cause a significant allergy in susceptible individuals; chiggers are the sole vectors for the bacterium that causes scrub typhus; Demodex mites are part of the normal microfauna of humans and their pets, but under certain conditions populations grow out of control and affect the integrity of the integumentary system; and scabies mites cause one of the most common dermatological diseases worldwide. On the other hand, recent genome sequences of mites provide novel tools for mite control and the development of new biomaterial with applications in biomedicine. Despite the palpable disease burden, mites remain understudied in parasitological research. By better understanding mite biology and disease processes, researchers can identify new ways to diagnose, manage, and prevent common mite-induced afflictions. This knowledge can lead to improved clinical outcomes and reduced disease burden from these remarkably widespread yet understudied creatures.


Asunto(s)
Artrópodos , Hipersensibilidad , Animales , Humanos , Materiales Biocompatibles , Costo de Enfermedad , Ecosistema
11.
Glob Chang Biol ; 30(4): e17281, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38619550

RESUMEN

The ongoing climate change on the Tibetan Plateau, leading to warming and precipitation anomalies, modifies phosphorus (P) cycling in alpine meadow soils. However, the interactions and cascading effects of warming and precipitation changes on the key "extracellular" and "intracellular" P cycling genes (PCGs) of bacteria are largely unknown for these P-limited ecosystems. We used metagenomics to analyze the individual and combined effects of warming and altered precipitation on soil PCGs and P transformation in a manipulation experiment. Warming and increased precipitation raised Olsen-P (bioavailable P, AP) by 13% and 20%, respectively, mainly caused by augmented hydrolysis of organic P compounds (NaOH-Po). The decreased precipitation reduced soil AP by 5.3%. The richness and abundance of the PCGs' community in soils on the cold Tibetan plateau were more sensitive to warming than altered precipitation. The abundance of PCGs and P cycling processes decreased under the influence of individual climate change factors (i.e., warming and altered precipitation alone), except for the warming combined with increased precipitation. Pyruvate metabolism, phosphotransferase system, oxidative phosphorylation, and purine metabolism (all "intracellular" PCG) were closely correlated with P pools under climate change conditions. Specifically, warming recruited bacteria with the phoD and phoX genes, which encode enzymes responsible for phosphoester hydrolysis (extracellular P cycling), strongly accelerated organic P mineralization and so, directly impacted P bioavailability in alpine soil. The interactions between warming and altered precipitation profoundly influenced the PCGs' community and facilitated microbial adaptation to these environmental changes. Warming combined with increased precipitation compensated for the detrimental impacts of the individual climate change factors on PCGs. In conclusion, warming combined with rising precipitation has boosting effect on most P-related functions, leading to the acceleration of P cycling within microbial cells and extracellularly, including mineralization and more available P release for microorganisms and plants in alpine soils.


Asunto(s)
Ecosistema , Suelo , Humanos , Disponibilidad Biológica , Cambio Climático , Fósforo
12.
Nat Commun ; 15(1): 3147, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605009

RESUMEN

Plasmids are pivotal in driving bacterial evolution through horizontal gene transfer. Here, we investigated 3467 human gut microbiome samples across continents and disease states, analyzing 11,086 plasmids. Our analyses reveal that plasmid dispersal is predominantly stochastic, indicating neutral processes as the primary driver of their wide distribution. We find that only 20-25% of plasmid DNA is being selected in various disease states, constraining its distribution across hosts. Selective pressures shape specific plasmid segments with distinct ecological functions, influenced by plasmid mobilization lifestyle, antibiotic usage, and inflammatory gut diseases. Notably, these elements are more commonly shared within groups of individuals with similar health conditions, such as Inflammatory Bowel Disease (IBD), regardless of geographic location across continents. These segments contain essential genes such as iron transport mechanisms- a distinctive gut signature of IBD that impacts the severity of inflammation. Our findings shed light on mechanisms driving plasmid dispersal and selection in the human gut, highlighting their role as carriers of vital gene pools impacting bacterial hosts and ecosystem dynamics.


Asunto(s)
Ecosistema , Enfermedades Inflamatorias del Intestino , Humanos , Plásmidos/genética , Bacterias/genética , Antibacterianos , Transferencia de Gen Horizontal , Enfermedades Inflamatorias del Intestino/genética
13.
Glob Chang Biol ; 30(4): e17268, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562029

RESUMEN

Although substantial advances in predicting the ecological impacts of global change have been made, predictions of the evolutionary impacts have lagged behind. In soil ecosystems, microbes act as the primary energetic drivers of carbon cycling; however, microbes are also capable of evolving on timescales comparable to rates of global change. Given the importance of soil ecosystems in global carbon cycling, we assess the potential impact of microbial evolution on carbon-climate feedbacks in this system. We begin by reviewing the current state of knowledge concerning microbial evolution in response to global change and its specific effect on soil carbon dynamics. Through this integration, we synthesize a roadmap detailing how to integrate microbial evolution into ecosystem biogeochemical models. Specifically, we highlight the importance of microscale mechanistic soil carbon models, including choosing an appropriate evolutionary model (e.g., adaptive dynamics, quantitative genetics), validating model predictions with 'omics' and experimental data, scaling microbial adaptations to ecosystem level processes, and validating with ecosystem-scale measurements. The proposed steps will require significant investment of scientific resources and might require 10-20 years to be fully implemented. However, through the application of multi-scale integrated approaches, we will advance the integration of microbial evolution into predictive understanding of ecosystems, providing clarity on its role and impact within the broader context of environmental change.


Asunto(s)
Ecosistema , Microbiología del Suelo , Suelo , Carbono , Clima
14.
PeerJ ; 12: e16746, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38562998

RESUMEN

Identifying suitable habitats and conserving corridors are crucial to the long-term conservation of large and conflict-prone animals. Being a flagship species, survival of Asian elephants is threatened by human-induced mortality and habitat modification. We aimed to assess the habitat suitability and connectivity of the Asian elephant Elephas maximus Linnaeus, 1758 habitat in the state of Odisha in eastern India. We followed the ensemble of spatial prediction models using species presence data and five environmental variables. We used least-cost path and circuit theory approaches to identify the spatial connectivity between core habitats for Asian elephants. The results revealed that normalized difference vegetation index (NDVI; variable importance 42%) and terrain ruggedness (19%) are the most influential variables for predicting habitat suitability of species within the study area. Our habitat suitability map estimated 14.6% of Odisha's geographical area (c. 22,442 km2) as highly suitable and 13.3% (c. 20,464 km2) as moderate highly suitable. We identified 58 potential linkages to maintain the habitat connectivity across study area. Furthermore, we identified pinch points, bottlenecks, and high centrality links between core habitats. Our study offers management implications for long-term landscape conservation for Asian elephants in Odisha and highlights priority zones that can help maintain spatial links between elephant habitats.


Asunto(s)
Elefantes , Animales , Humanos , Ecosistema , Ambiente , India
15.
Sci Rep ; 14(1): 7647, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561426

RESUMEN

The persistent challenges posed by pollution and climate change are significant factors disrupting ecosystems, particularly aquatic environments. Numerous contaminants found in aquatic systems, such as ammonia and metal toxicity, play a crucial role in adversely affecting aquaculture production. Against this backdrop, fish feed was developed using quinoa husk (the byproduct of quinoa) as a substitute for fish meal. Six isonitrogenous diets (30%) and isocaloric diets were formulated by replacing fish meal with quinoa husk at varying percentages: 0% quinoa (control), 15, 20, 25, 30 and 35%. An experiment was conducted to explore the potential of quinoa husk in replacing fish meal and assess its ability to mitigate ammonia and arsenic toxicity as well as high-temperature stress in Pangasianodon hypophthalmus. The formulated feed was also examined for gene regulation related to antioxidative status, immunity, stress proteins, growth regulation, and stress markers. The gene regulation of sod, cat, and gpx in the liver was notably upregulated under concurrent exposure to ammonia, arsenic, and high-temperature (NH3 + As + T) stress. However, quinoa husk at 25% downregulated sod, cat, and gpx expression compared to the control group. Furthermore, genes associated with stress proteins HSP70 and DNA damage-inducible protein (DDIP) were significantly upregulated in response to stressors (NH3 + As + T), but quinoa husk at 25% considerably downregulated HSP70 and DDIP to mitigate the impact of stressors. Growth-responsive genes such as myostatin (MYST) and somatostatin (SMT) were remarkably downregulated, whereas growth hormone receptor (GHR1 and GHRß), insulin-like growth factors (IGF1X, IGF2X), and growth hormone gene were significantly upregulated with quinoa husk at 25%. The gene expression of apoptosis (Caspase 3a and Caspase 3b) and nitric oxide synthase (iNOS) were also noticeably downregulated with quinoa husk (25%) reared under stressful conditions. Immune-related gene expression, including immunoglobulin (Ig), toll-like receptor (TLR), tumor necrosis factor (TNFα), and interleukin (IL), strengthened fish immunity with quinoa husk feed. The results revealed that replacing 25% of fish meal with quinoa husk could improve the gene regulation of P. hypophthalmus involved in mitigating ammonia, arsenic, and high-temperature stress in fish.


Asunto(s)
Arsénico , Bagres , Chenopodium quinoa , Animales , Suplementos Dietéticos/análisis , Chenopodium quinoa/genética , Arsénico/toxicidad , Amoníaco , Ecosistema , Dieta , Antioxidantes , Caspasas , Alimentación Animal/análisis
16.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230011, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38583474

RESUMEN

Most emissions scenarios suggest temperature and precipitation regimes will change dramatically across the globe over the next 500 years. These changes will have large impacts on the biosphere, with species forced to migrate to follow their preferred environmental conditions, therefore moving and fragmenting ecosystems. However, most projections of the impacts of climate change only reach 2100, limiting our understanding of the temporal scope of climate impacts, and potentially impeding suitable adaptive action. To address this data gap, we model future climate change every 20 years from 2000 to 2500 CE, under different CO2 emissions scenarios, using a general circulation model. We then apply a biome model to these modelled climate futures, to investigate shifts in climatic forcing on vegetation worldwide, the feasibility of the migration required to enact these modelled vegetation changes, and potential overlap with human land use based on modern-day anthromes. Under a business-as-usual scenario, up to 40% of terrestrial area is expected to be suited to a different biome by 2500. Cold-adapted biomes, particularly boreal forest and dry tundra, are predicted to experience the greatest losses of suitable area. Without mitigation, these changes could have severe consequences both for global biodiversity and the provision of ecosystem services. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Tundra , Cambio Climático , Temperatura
17.
PLoS One ; 19(4): e0299101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38573913

RESUMEN

The influence of intraspecific trait variation on species interactions makes trait-based approaches critical to understanding eco-evolutionary processes. Because species occupy habitats that are patchily distributed in space, species interactions are influenced not just by the degree of intraspecific trait variation but also the relative proportion of trait variation that occurs within- versus between-patches. Advancement in trait-based ecology hinges on understanding how trait variation is distributed within and between habitat patches across the landscape. We sampled larval spotted salamanders (Ambystoma maculatum) across six spatially discrete ponds to quantify within- and between-pond variation in mass, length, and various metrics associated with their relationship (scaling, body condition, shape). Across all traits, within-pond variation contributed more to total observed morphological variation than between-pond variation. Between-pond variation was not negligible, however, and explained 20-41% of total observed variation in measured traits. Between-pond variation was more pronounced in salamander tail morphology compared to head or body morphology, suggesting that pond-level factors more strongly influence tails than other body parts. We also observed differences in mass-length relationships across ponds, both in terms of scaling slopes and intercepts, though differences in the intercepts were much stronger. Preliminary evidence hinted that newly constructed ponds were a driver of the observed differences in mass-length relationships and morphometrics. General pond-level difference in salamander trait covariation suggest that allometric scaling of morphological traits is context dependent in patchy landscapes. Effects of pond age offer the hypothesis that habitat restoration through pond construction is a driver of variation in trait scaling, which managers may leverage to bolster trait diversity.


Asunto(s)
Ambystoma , Estanques , Animales , Urodelos , Ecosistema , Ecología
18.
Sci Total Environ ; 926: 171849, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38537828

RESUMEN

Urban streams are exposed to a variety of anthropogenic stressors. Freshwater salinization is a key stressor in these ecosystems that is predicted to be further exacerbated by climate change, which causes simultaneous changes in flow parameters, potentially resulting in non-additive effects on aquatic ecosystems. However, the effects of salinization and flow velocity on urban streams are still poorly understood as multiple-stressor experiments are often conducted at pristine rather than urban sites. Therefore, we conducted a mesocosm experiment at the Boye River, a recently restored stream located in a highly urbanized area in Western Germany, and applied recurrent pulses of salinity along a gradient (NaCl, 9 h daily of +0 to +2.5 mS/cm) in combination with normal and reduced current velocities (20 cm/s vs. 10 cm/s). Using a comprehensive assessment across multiple organism groups (macroinvertebrates, eukaryotic algae, fungi, parasites) and ecosystem functions (primary production, organic-matter decomposition), we show that flow velocity reduction has a pervasive impact, causing community shifts for almost all assessed organism groups (except fungi) and inhibiting organic-matter decomposition. Salinization affected only dynamic components of community assembly by enhancing invertebrate emigration via drift and reducing fungal reproduction. We caution that the comparatively small impact of salt in our study can be due to legacy effects from past salt pollution by coal mining activities >30 years ago. Nevertheless, our results suggest that urban stream management should prioritize the continuity of a minimum discharge to maintain ecosystem integrity. Our study exemplifies a holistic approach for the assessment of multiple-stressor impacts on streams, which is needed to inform the establishment of a salinity threshold above which mitigation actions must be taken.


Asunto(s)
Ecosistema , Ríos , Animales , Invertebrados/fisiología , Agua Dulce , Cloruro de Sodio
19.
Sci Total Environ ; 926: 171760, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38537830

RESUMEN

Ecosystems that offer carbon sequestration by leaching bicarbonate to groundwater are valuable natural capital. One region that may offer this service is the west coast of South Africa. Over 20 % is covered by soil mounds ("heuweltjies") up to 40 m diameter, 2 m high, inhabited by the southern harvester termite Microhodotermes viator and enriched in soil organic and inorganic carbon and soluble minerals. We aimed to generate radiogenic and stable isotope data for soils and groundwater in a region where these data are absent, to 1) verify the atmosphere-soil-groundwater link, and 2) resolve the timing and pattern of calcite dissolution and water infiltration in the landscape. Results show that soil and groundwater sulfate have the same marine aerosol source. Episodic calcite dissolution in mound centers, which increased during periods of global cooling, has been set against background input of marine aerosols since before the Last Glacial according to radiocarbon (14C) ages. Our data push back soil organic carbon 14C ages of inhabited termite mounds to 13-19 ka (kiloannum, thousand years before present), nest carbonate 14C ages to 33 ka, and mound soil carbonate 14C ages to 34 ka, making these the oldest active termite features ever dated. These ages are consistent with soil organic carbon and carbonate 14C ages of regional, non-mound, coastal petrocalcic horizons formed by accumulation of carbonate leached from their overlying aeolian dune fields. Harvesting activities of termites inject younger organic material around nests >1 m deep, leading to continuous renewal of important soil carbon reservoirs at depth. Termite bioturbation increases the system's ability to dissolve carbonate. The central, bioturbated part of the mounds have greater infiltration depths and greater calcite dissolution, whereas surrounding soils experienced more surface runoff. Calcareous termite mounds offer a mechanism to sequester CO2 through dissolution and leaching of soil carbonate-bicarbonate to groundwater.


Asunto(s)
Ecosistema , Isópteros , Animales , Suelo , Carbono , Bicarbonatos , Sudáfrica , Carbonatos , Carbonato de Calcio
20.
Sci Total Environ ; 922: 171249, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38431169

RESUMEN

How Antarctic species are facing historical and new stressors remains under-surveyed and risks to wildlife are still largely unknown. Adélie penguins Pygoscelis adeliae are well-known bioindicators and sentinels of Antarctic ecosystem changes, a true canary in the coal mine. Immuno-haematological parameters have been proved to detect stress in wild animals, given their rapid physiological response that allows them tracking environmental changes and thus inferring habitat quality. Here, we investigated variation in Erythrocyte Nuclear Abnormalities (ENAs) and White Blood Cells (WBCs) in penguins from three clustered colonies in the Ross Sea, evaluating immuno-haematological parameters according to geography, breeding stage, and individual penguin characteristics such as sex, body condition and nest quality. Concentrations of mercury (Hg) and stable isotopes of carbon and nitrogen (as proxies of the penguin's trophic ecology) were analysed in feathers to investigate the association between stress biomarkers and Hg contamination in Adélie penguins. Colony and breeding stage were not supported as predictors of immuno-haematological parameters. ENAs and WBCs were respectively ∼30 % and ∼20 % higher in male than in female penguins. Body condition influenced WBCs, with penguins in the best condition having a ∼22 % higher level of WBCs than those in the worst condition. Nest position affected the proportion of micronuclei (MNs), with inner-nesting penguins having more than three times the proportion of MNs than penguins nesting in peripheral positions. Heterophils:Lymphocytes (H:L) ratio was not affected by any of the above predictors. Multiple factors acting as stressors are expected to increase prominently in Antarctic wildlife in the near future, therefore extensive monitoring aimed to assess the health status of penguin populations is mandatory.


Asunto(s)
Mercurio , Spheniscidae , Animales , Masculino , Femenino , Ecosistema , Regiones Antárticas , Ecología , Animales Salvajes , Spheniscidae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...