Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.557
Filtrar
1.
Water Sci Technol ; 89(6): 1570-1582, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557719

RESUMEN

Despite the high adsorption capacity of polyaluminum chloride and anionic polyacrylamide water treatment residuals (PAC-APAM WTRs) for Pb2+, Cd2+, Cu2+, and Zn2+, their influence on the adsorption behavior of heavy metals in traditional bioretention soil media remains unclear. This study investigated the impact of PAC-APAM WTRs at a 20% weight ratio on the adsorption removal of Pb2+, Cd2+, Cu2+, and Zn2+ in three types of soils. The results demonstrated improved heavy metal adsorption in the presence of PAC-APAM WTRs, with enhanced removal observed at higher pH levels and temperatures. The addition of PAC-APAM WTRs augmented the maximum adsorption capacity for Pb2+ (from 0.98 to 3.98%), Cd2+ (from 0.52 to 10.99%), Cu2+ (from 3.69 to 36.79%), and Zn2+ (from 2.63 to 13.46%). The Langmuir model better described the data in soils with and without PAC-APAM WTRs. The pseudo-second-order model more accurately described the adsorption process, revealing an irreversible chemical process, although qe demonstrated improvement with the addition of PAC-APAM WTRs. This study affirms the potential of PAC-APAM WTRs as an amendment for mitigating heavy metal pollution in stormwater bioretention systems. Further exploration of the engineering application of PAC-APAM WTRs, particularly in field conditions for the removal of dissolved heavy metals, is recommended.


Asunto(s)
Resinas Acrílicas , Hidróxido de Aluminio , Metales Pesados , Purificación del Agua , Cadmio , Suelo , Adsorción , Plomo , Metales Pesados/análisis , Purificación del Agua/métodos
2.
Open Vet J ; 14(1): 266-273, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633190

RESUMEN

Background: Canned fish products are widely consumed in Egypt, particularly for protein-rich meals that are quick to prepare and low in calories. Canned fish products are contaminated with toxic metals from the fish itself or from canning materials during processing. Aim: To determine the residual levels of cadmium (Cd), lead (Pb), arsenic (As), mercury (Hg), aluminum (Al), and Tin (Sn) in some canned fish products obtained from retail shops in Mansoura, Egypt. Furthermore, noncarcinogenic health risks evaluation for the Egyptian population due to hazardous metal oral intake. Methods: One hundred canned fish products (20 each of herring, mackerel, salmon, sardine, and tuna) were collected from May to September 2023, and canned fish products were obtained from Mansoura city markets in Egypt. Samples were digested in a solution composed of 60% nitric acid and 40% perchloric acid, and then an atomic absorption spectrophotometer was used for the detection of selected toxic metals. Results: It was found that the residual level of hazardous metals exceeded the acceptability level established in the European Union for Pb, Cd, and Hg by 20%, 10%, and 10%, 15%, 5%, and 20%, 35%, 30%, and 45%, 25%, 25%, and 40%, in examined herring, mackerel, sardine, and tuna, respectively. In contrast, all salmon samples were accepted for Pb and Hg, and only 5% were not accepted due to a higher Cd level than the maximum permissible limit. The average estimated daily intake of (EDI) is below the tolerable daily intakes (TDIs) for all metals. Comparatively, the EDI of Hg was 0.265 µg/kg body weight (B.W) exceeded TDIs 0.228 µg/kg B.W. The hazard index for canned tuna and sardines is more than one. Conclusion: Canned fish products are contaminated with a variety of toxic metals, especially sardine and tuna. Therefore, it is advised to decrease the consumption rate of such fish products.


Asunto(s)
Cadmio , Mercurio , Animales , Cadmio/análisis , Egipto , Plomo , Productos Pesqueros/análisis , Mercurio/análisis , Medición de Riesgo , Peces , Atún
3.
PLoS One ; 19(4): e0288190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625896

RESUMEN

BACKGROUND: Exposure to heavy metals (cadmium, mercury, and lead) has been linked with adverse health outcomes, especially their nephrotoxic effects at high levels of exposure. We conducted a replication study to examine the association of low-level heavy metal exposure and chronic kidney disease (CKD) using a larger NHANES data set compared to previous studies. METHODS: The large cross-sectional study comprised 5,175 CKD cases out of 55677 participants aged 20-85 years from the 1999-2020 National Health and Nutrition Examination Survey [NHANES]. Logistic regression analysis was applied to estimate the associations between CKD and heavy metals [Cd, Pb, Hg] measured as categorical variables after adjusting with age, race, gender, socioeconomic status, hypertension, diabetes mellitus and blood cotinine level as smoking status. RESULTS: Compared to the lowest quartile of blood Cd, exposures to the 2nd, 3rd and 4th quartiles of blood Cd were statistically significantly associated with higher odds of CKD after adjustment for blood Pb and Hg, with OR = 1.79, [95% CI; 1.55-2.07, p<0.0001], OR = 2.17, [95% CI; 1.88-2.51, p<0.0001] and OR = 1.52, [95% CI; 1.30-1.76, p<0.0001] respectively. The 2nd, 3rd and 4th quartiles of blood Cd remained statistically significantly associated with higher odds of CKD after adjustment for blood cotinine level, with OR = 2.06, [95% CI; 1.80-2.36, p<0.0001], OR = 3.18, [95% CI; 2.79-3.63, p<0.0001] and OR = 5.54, [95% CI; 4.82-6.37, p<0.0001] respectively. Exposure to blood Pb was statistically significantly associated with higher odds of CKD in the 2nd, 3rd and 4th quartile groups, after adjustment for all co-variates (ag, gender, race, socio-economic status, hypertension, diabetes mellitus, blood cadmium, mercury, and cotinine levels) in all the four models. Blood Hg level was statistically significantly associated with lower odds of CKD in the 2nd quartile group in model 2, 3rd quartile group in model 1, 2 and 3, and the 4th quartile group in all the four models. CONCLUSIONS: Our findings showed that low blood levels of Cd and Pb were associated with higher odds of CKD while low blood levels of Hg were associated with lower odds of CKD in the US adult population. However, temporal association cannot be determined as it is a cross sectional study.


Asunto(s)
Diabetes Mellitus , Hipertensión , Mercurio , Metales Pesados , Insuficiencia Renal Crónica , Adulto , Humanos , Estudios Transversales , Cadmio/toxicidad , Encuestas Nutricionales , Cotinina , Plomo , Metales Pesados/toxicidad , Mercurio/toxicidad , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/etiología , Hipertensión/epidemiología
4.
Anal Chim Acta ; 1302: 342492, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38580406

RESUMEN

The rational design of DNA tracks is an effective pathway to guide the autonomous movement and high-efficiency recognition in DNA walkers, showing outstanding advantages for the cascade signal amplification of electrochemical biosensors. However, the uncontrolled distance between two adjacent tracks on the electrode could increase the risk of derailment and interruption of the reaction. Hence, a novel four-way balanced cruciform-shaped DNA track (C-DNT) was designed as a structured pathway to improve the effectiveness and stability of the reaction in DNA walkers. In this work, two kinds of cruciform-shaped DNA were interconnected as a robust structure that could avoid the invalid movement of the designed DNA walker on the electrode. When hairpin H2 was introduced onto the electrode, the strand displacement reaction (SDR) effectively triggered movements of the DNA walker along the cruciform-shaped track while leaving ferrocene (Fc) on the electrode, leading to a significant enhancement of the electrochemical signal. This design enabled the walker to move in an excellent organized and controllable manner, thus enhancing the reaction speed and walking efficiency. Compared to other walkers moving on random tracks, the reaction time of the C-DNT-based DNA walker could be reduced to 20 min. Lead ion (Pb2+) was used as a model target to evaluate the analytical performance of this biosensor, which exhibited a low detection limit of 0.033 pM along with a wide detection ranging from 0.1 pM to 500 nM. This strategy presented a novel concept for designing a high-performance DNA walker-based sensing platform for the detection of contaminants.


Asunto(s)
Técnicas Biosensibles , Plomo , ADN Cruciforme , Límite de Detección , ADN/química , Técnicas Electroquímicas
5.
Int J Biol Macromol ; 265(Pt 2): 130867, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508557

RESUMEN

This study focuses on the fabrication of a novel sensing platform on a screen-printed carbon electrode, modified by a combination of hydrothermally synthesized iron dioxide (ε-Fe2O3) nanoparticles and Chitosan (CS) biopolymer. This unique organic-inorganic hybrid material was developed for Electrochemical Impedance Spectroscopy (EIS) sensing, specifically targeting heavy metal ions that include Hg2+, Cd2+, as well as Pb2+. The investigation encompassed a comprehensive analysis of various aspects of the prepared Fe2O3 and CS/ε-Fe2O3 nanocomposites, including phase identification, determination of crystallite size, assessment of surface morphology, etc. CS/ε-Fe2O3 was drop-casted and deposited on the Screen-Printed Electrode (SPE). The resulting sensor exhibited excellent performance in the precise and selective quantification of Hg2+, Cd2+, and Pb2+ ions, with minimal interference from other substances. The fabricated sensor exhibits excellent performance as the detection range for Hg2+, Cd2+, and Pb2+ ions linearity is 2-20 µM, sensitivity, and LOD are 243 Ω/ µM cm2 and 0.191 µM, 191 Ω/µM cm2, and 0.167 µM, 879 Ω/ µM cm2, and 0.177 µM respectively. The stability of the CS/ε-Fe2O3/SPE electrode is demonstrated by checking its conductivity for up to 60 days for Hg2+, Cd2+, and Pb2+ ions. The reusability of the fabricated electrode is 14 scans, 13 scans, and 12 scans for Hg2+, Cd2+, and Pb2+ ions respectively. The findings indicate the successful development of an innovative CS/ε-Fe2O3 electrode for the EIS sensing platform. This platform demonstrates notable potential for addressing the critical need for efficient and sensitive EIS sensors capable of detecting a range of hazardous heavy metal ions, including Hg2+, Cd2+, and Pb2+.


Asunto(s)
Quitosano , Mercurio , Metales Pesados , Nanopartículas , Cadmio/química , Plomo , Carbono , Metales Pesados/análisis , Mercurio/química , Electrodos , Agua/química , Iones
6.
Pak J Biol Sci ; 27(2): 52-58, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38516746

RESUMEN

<b>Background and Objective:</b> Lead poisoning (Pb) is a big problem because it is found in almost all objects in daily life such as vehicle fuel, water pipes, ceramics, cosmetics and others. Continuous lead exposure can increase ROS resulting in an increase in hepatic IL-6 and caspase 3 which replaces hepatic cell apoptosis. The objective of this study was to determine the effect of <i>Apium graveolens</i> (celery) extract on plasma IL-6 and hepatic caspase 3 levels. <b>Materials and Methods:</b> This study used a post-test control group design. The research subjects were 20 Wistar rats that met the inclusion criteria and were divided into 4 groups randomly, namely (a) Sham group that had no treatment, (b) Negative control group was induced with lead acetate 200 mg kg<sup>1</sup> body weight/day without any treatment (c) Positive control group and (d) Treated group. On the 15th day, blood was taken to check IL-6 levels and tissue was taken for liver caspase 3 examination by immunohistochemical method. Data analysis used the one-way ANOVA test and continued with the <i>post hoc</i> LSD test. <b>Results:</b> The highest mean caspase 3 expression was in the control group 45.84±4.39 pg mL<sup>1</sup>, while the mean of IL-6 plasma level was highest in the P1 641.33±39.72 pg mL<sup>1</sup> group. The Mann-Whitney test showed a significant difference in IL-6 levels between the study groups (p = 0.000). The Mann-Whitney test showed a significant difference in caspase 3 levels between the study groups (p = 0.000). <b>Conclusion:</b> Giving celery extract 300 mg kg<sup>1</sup> body weight/day affects plasma IL-6 and hepatic caspase 3 levels in lead acetate-induced rats.


Asunto(s)
Apium , Intoxicación por Plomo , Compuestos Organometálicos , Animales , Ratas , Apium/química , Peso Corporal , Caspasa 3/efectos de los fármacos , Interleucina-6/sangre , Interleucina-6/química , Interleucina-6/metabolismo , Intoxicación por Plomo/tratamiento farmacológico , Hígado/metabolismo , Modelos Animales , Extractos Vegetales/farmacología , Ratas Wistar , Verduras/química
7.
Environ Geochem Health ; 46(4): 137, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483759

RESUMEN

Lacustrine sediment quality indicates the effects of both natural and anthropogenic activities on the ecosystem and communities. Despite its ecological importance, myriad complexities, and potential contaminant sources, the spatial distribution of surficial sediments in Lake Victoria's Winam Gulf has never been comprehensively documented. The purpose of this study was to assess the spatial distribution, pathways, and ecological risk of metal elements in the lake using a sediment matrix. Sediment samples were collected throughout the gulf in November 2022. The concentrations of Al, As, Cd, Co, Cr, Cu, Fe, K, Mn, Mo, Ni, P, Pb, Sb, Sn, Ti, Tl, U, and Zn were compared to different contamination metrics and ecological risk assessment indices. The average concentrations were in the following decreasing order: Zn > > > Cr > > Cu > Ni > Pb > Co > As > Cd with mean (± SD) of 185 ± 45 mg kg-1, 56 ± 15 mg kg-1, 45 ± 16 mg kg-1, 37 ± 11 mg kg-1, 24 ± 5 mg kg-1, 20 ± 7 mg kg-1, 3.9 ± 1.3 mg kg-1, 0.30 ± 0.09 mg kg-1, respectively, with strong indications of anthropogenic sources. Average concentrations were in the following decreasing order: Zn > > > Cr, Cu, Ni, Pb, Co, As, and Cd levels (mean ± SD) were 185 ± 45 mg kg-1, 56 ± 15 mg kg-1, 45 ± 16 mg kg-1, 37 ± 11 mg kg-1, 24 ± 5 mg kg-1, 20 ± 7 mg kg-1, 3.9 ± 1.3 mg kg-1 and 0.30 ± 0.09 mg kg-1 with strong indications of anthropogenic sources. The geo-accumulation index (Igeo) and enrichment factor categorisation schemes, respectively, classified these as uncontaminated (level 0) and depletion to minimal enrichment (level 1), while the ecological risk analysis classified them as "low risk". The mouth of the Nyando River, as well as Kisumu, Kendu, and Homa bays, were the most element-enriched and should be prioritised for focused monitoring and remediation. As a result, targeted land management of urban, industrial, transportation, and agricultural areas offers the opportunity to reduce sediment inputs into the lake ecosystem.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Metales Pesados/análisis , Ecosistema , Cadmio/análisis , Lagos , Kenia , Plomo/análisis , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/análisis , Medición de Riesgo , China
8.
Environ Geochem Health ; 46(4): 143, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520486

RESUMEN

The aim of this study was to investigate the status of trace metals (As, Cr, Cu, Ni, Pb, Fe, and Zn) and health and carcinogenic risk associated then in the Ebolowa Municipal Lake (EML) basin. To this end, 21 water samples were collected from the EML and its two tributaries, Mfoumou and Bengo'o, and analyzed by Quantofix method (nanocolors and visiocolor ECO) by using the MACHEREY-NAGEL photometer. The data were processed using multivariate statistics. The results showed that all the physicochemical parameters (pH, EC, and TDS), with the exception of TDS, comply with were within WHO limits. The distribution of trace metals at the three sites investigated was as follows: Zn (80-400 ± 1.58 µg/L) > Cu (50-150 ± 9.38 µg/L) > Fe (10-40 ± 0.71 µg/L) > Pb (1-20 ± 3.02 µg/L) > As (1-9 ± 0.44 µg/L) > Ni (1-9 ± 1.48 µg/L). However, the highest values were observed in the EML and the Mfoumou River, where Pb pollution was noted. Statistical analysis showed that anthropogenic inputs increase the presence of Cr, Cu, Pb, and Zn. Trace Metal Pollution Index values were below 15 at all sites, illustrating low levels of pollution. The trace metal evaluation index values for the Bengo'o stream are pure (mean = 0.6), slightly affected in the Mfoumou stream (mean = 2.0), and moderately affected in the EML (mean = 2.2). The toxicity load index values illustrate that the waters studied are toxic. The non-carcinogenic (HI) and carcinogenic (CR) health risk index values suggest a risk linked to oral ingestion in the LME and Mfoumou watercourses. The latter appears to be the main source of allochthonous pollutant input to the EML.


Asunto(s)
Metales Pesados , Oligoelementos , Contaminantes Químicos del Agua , Metales Pesados/toxicidad , Metales Pesados/análisis , Lagos , Plomo/análisis , Contaminación Ambiental/análisis , Contaminantes Químicos del Agua/análisis , Carcinógenos/análisis , Oligoelementos/análisis , Medición de Riesgo , África Central , Monitoreo del Ambiente/métodos
9.
Aquat Toxicol ; 270: 106887, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38461756

RESUMEN

Saltmarsh sediments are susceptible to accumulation of excessive concentrations of anthropogenically elevated metals such as lead (Pb) and zinc (Zn). The resident salt tolerant plants of saltmarsh ecosystems form the basal underpinning of these ecosystems. As such, metal-associated adverse impacts on their physiology can have detrimental flow-on effects at individual, population, and community levels. The present study assessed the accumulation and partitioning of ecologically relevant concentrations of Pb, Zn, and their combination in a dominant Australian saltmarsh species, Sarcocornia quinqueflora. Plants were hydroponically maintained under glasshouse conditions for 16 weeks exposure to either Pb (20 µg l-1), Zn (100 µg l-1), or their mixture. We evaluated the chronic toxicological effects of single and mixed metal treatments with reference to metal uptake and partitioning, photosynthetic performance, photosynthetic pigment concentration, biomass and growth. Lead was more toxic than Zn, and Zn appeared to have an antagonistic effect on the toxicological effects of Pb in S.quinqueflora in terms of metal uptake, photosynthetic performance, photosynthetic pigment concentrations, and growth. Indeed, the tolerance index was 55 % in plants treated with Pb compared to 77 % in Zn treated plants and 73 % in Pb+Zn treated plants. Finally, Sarcocornia quinqueflora primarily accumulated both Pb and Zn in roots at concentrations exceeding unity whilst translocation of these metals to above ground tissues was restricted regardless of treatment. This suggests that S. quinqueflora may be suitable for phytostabilisation of Zn, and of Pb particularly in the presence of Zn.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Plantas Tolerantes a la Sal , Plomo/toxicidad , Biomasa , Ecosistema , Australia , Contaminantes Químicos del Agua/toxicidad , Zinc/toxicidad , Metales Pesados/análisis , Biodegradación Ambiental
10.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474066

RESUMEN

Planar tetracoordinate silicon, germanium, tin, and lead (ptSi/Ge/Sn/Pb) species are scarce and exotic. Here, we report a series of penta-atomic ptSi/Ge/Sn/Pb XB2Bi2 (X = Si, Ge, Sn, Pb) clusters with 20 valence electrons (VEs). Ternary XB2Bi2 (X = Si, Ge, Sn, Pb) clusters possess beautiful fan-shaped structures, with a Bi-B-B-Bi chain surrounding the central X core. The unbiased density functional theory (DFT) searches and high-level CCSD(T) calculations reveal that these ptSi/Ge/Sn/Pb species are the global minima on their potential energy surfaces. Born-Oppenheimer molecular dynamics (BOMD) simulations indicate that XB2Bi2 (X = Si, Ge, Sn, Pb) clusters are robust. Bonding analyses indicate that 20 VEs are perfect for the ptX XB2Bi2 (X = Si, Ge, Sn, Pb): two lone pairs of Bi atoms; one 5c-2e π, and three σ bonds (two Bi-X 2c-2e and one B-X-B 3c-2e bonds) between the ligands and X atom; three 2c-2e σ bonds and one delocalized 4c-2e π bond between the ligands. The ptSi/Ge/Sn/Pb XB2Bi2 (X = Si, Ge, Sn, Pb) clusters possess 2π/2σ double aromaticity, according to the (4n + 2) Hückel rule.


Asunto(s)
Tetranitrato de Pentaeritritol , Rubiaceae , Embarazo , Femenino , Humanos , Electrones , Plomo , Simulación de Dinámica Molecular , Parto
11.
Sci Total Environ ; 923: 171603, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38461996

RESUMEN

This study aimed to determine the impact of land use/cover changes on the heavy metal content in the Sultan Marshland and surrounding area and assess the pollution status. 54 topsoil samples (0-20 cm) were collected from the Rangeland, Farmland, Scrubland, Southern Marshland, Northern Marshland, and Dry Lake areas. The heavy metal contents of the soil samples (Cr, Pb, Fe, Zn, Cu, Co, Mn, Cd, Mo, As, and Ni) were determined using ICP-MS and ICP-OES devices. The impact of land use/cover change on soil heavy metal content was evaluated using variance analysis, while differences between groups were identified using the Duncan test. Principal Component Analysis (PCA) was conducted to identify potential sources of heavy metals. The contamination status of the soils was evaluated based on land use/cover using the Contamination Factor (Cf), Pollution Load Index (PLI), Ecological Risk Factor (Er), and Potential Ecological Risk Index (PERI). Changes in land use/cover around the Sultan Marshlands affected heavy metal distribution of the soils except for Cd. Among all land use/cover types, Fe concentration was the highest in the soils, while Cd concentration was the lowest. Soils in Southern Marshland exhibited higher average concentrations of Cr, Fe, Zn, Co, Cu, and Ni compared to other land uses/covers. Farmlands and rangelands had higher concentrations of Cd, As and Pb. Land use/cover was ranked based on the total heavy metal load in the following order in terms of average values: Southern Marshland > Scrubland > Farmland > Rangeland > Northern Marshland > Dry Lake. According to Cf, the soils in the Dry Lake were exposed to considerable levels of As contamination. Based on PLI, half of the soil sampling points in the Southern Marshland soils showed a degradation in environmental quality. Er indicated that all land uses moderately polluted with Cd. According to the average PERI, all soils under different land use/cover types were categorized as having a low ecological risk. It was believed that heavy metals originated from both natural and human activities. To ensure the sustainability of the ecosystem and to mitigate the risk of heavy metal pollution entering the food chain, it is recommended to manage farming and mining activities and land use habits.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Suelo , Humedales , Ecosistema , Monitoreo del Ambiente , Cadmio/análisis , Plomo/análisis , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Medición de Riesgo , China
12.
Environ Sci Technol ; 58(12): 5244-5254, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466635

RESUMEN

Suspended particulate matter (SPM) carries a major fraction of metals in turbid coastal waters, markedly influencing metal bioaccumulation and posing risks to marine life. However, its effects are often overlooked in current water quality criteria for metals, primarily due to challenges in quantifying SPM's contribution. This contribution depends on the SPM concentration, metal distribution coefficients (Kd), and the bioavailability of SPM-bound metals (assimilation efficiency, AE), which can collectively be integrated as a modifying factor (MF). Accordingly, we developed a new stable isotope method to measure metal AE by individual organisms from SPM, employing the widely distributed filter-feeding clam Ruditapes philippinarum as a representative species. Assessing SPM from 23 coastal sites in China, we found average AEs of 42% for Zn, 26% for Cd, 20% for Cu, 8% for Ni, and 6% for Pb. Moreover, using stable isotope methods, we determined metal Kd of SPM from these sites, which can be well predicted by the total organic carbon and iron content (R2 = 0.977). We calculated MFs using a Monte Carlo method. The calculated MFs are in the range 9.9-43 for Pb, 8.5-37 for Zn, 2.9-9.7 for Cu, 1.4-2.7 for Ni, and 1.1-1.6 for Cd, suggesting that dissolved-metal-based criteria values should be divided by MFs to provide adequate protection to aquatic life. This study provides foundational guidelines to refine water quality criteria in turbid waters and protect coastal ecosystems.


Asunto(s)
Bivalvos , Metales Pesados , Contaminantes Químicos del Agua , Animales , Calidad del Agua , Sedimentos Geológicos , Disponibilidad Biológica , Ecosistema , Cadmio , Plomo , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Agua , Ríos , Material Particulado/análisis , Isótopos
13.
J Hazard Mater ; 469: 133948, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38493633

RESUMEN

Bioaccessibility and relative bioavailability of As, Cd, Pb and Sb was investigated in 30 legacy gold mining wastes (calcine sands, grey battery sands, tailings) from Victorian goldfields (Australia). Pseudo-total As concentration in 29 samples was 1.45-148-fold higher than the residential soil guidance value (100 mg/kg) while Cd and Pb concentrations in calcine sands were up to 2.4-fold and 30.1-fold higher than the corresponding guidance value (Cd: 20 mg/kg and Pb: 300 mg/kg). Five calcine sands exhibited elevated Sb (31.9-5983 mg/kg), although an Australian soil guidance value is currently unavailable. Arsenic bioaccessibility (n = 30) and relative bioavailability (RBA; n = 8) ranged from 6.10-77.6% and 10.3-52.9% respectively. Samples containing > 50% arsenopyrite/scorodite showed low As bioaccessibility (<20.0%) and RBA (<15.0%). Co-contaminant RBA was assessed in 4 calcine sands; Pb RBA ranged from 73.7-119% with high Pb RBA associated with organic and mineral sorbed Pb and, lower Pb RBA observed in samples containing plumbojarosite. In contrast, Cd RBA ranged from 55.0-67.0%, while Sb RBA was < 5%. This study highlights the importance of using multiple lines of evidence during exposure assessment and provides valuable baseline data for co-contaminants associated with legacy gold mining activities.


Asunto(s)
Arsénico , Contaminantes del Suelo , Arsénico/análisis , Cadmio , Antimonio , Plomo , Oro , Arena , Disponibilidad Biológica , Contaminantes del Suelo/análisis , Australia , Suelo , Minería
14.
Environ Monit Assess ; 196(4): 395, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528293

RESUMEN

This study assessed the accumulation levels and ecological risks associated with seven heavy metals (As, Pb, Cd, Hg, Cu, Cr, Zn) in the surface sediments of the Bong Mieu River in Quang Nam Province, Vietnam. The sampling encompassed 10 locations (S1-S10), considering areas both impacted and less impacted by gold mining activities. The findings revealed elevated levels of heavy metal pollution and associated ecological risks attributable to gold mining. Heavy metal content varied within specific ranges: As (70.6-341.2 mg/kg), Pb (216.3-504.1 mg/kg), Hg (0.138-0.252 mg/kg), Cd (0.91-1.51mg/kg), Cu (18.3-45.5 mg/kg), Cr (10.5-19.1 mg/kg), and Zn (49.3-84.1 mg/kg). Among these elements, Hg, Cu, Cr, Zn, and Cd adhered to the acceptable limits of VNTR 43:2017/MONRE (VNTR 43:2017/MONRE: National Technical Regulation/Ministry of Natural Resources and Environment of Vietnam). However, As and Pb content at all locations exceeded these limits significantly, with As being 4.1-20 times higher and Pb 2.3-5.5 times higher. The pollution of Pb and As was attributed to waste discharge from gold mining activities, which carry substantial amounts of these metals in various forms. The Igeo indicated heavy pollution of As and Pb in the sediments. Ecological risk factors were ranked as follows: E r i (As) > E r i (Pb) > E r i (Hg) > E r i (Cd) > E r i (Cu) > E r i (Cr) > E r i (Zn). The potential ecological risk (RI) due to combined heavy metal impact varied across locations, with S2 > S8 > S9 > S6 > S7 > S10 > S1 > S3 > S4 > S5, exhibiting low to moderate risk (RI values ranging from 73.4 to 252.8). The study area demonstrated high contamination levels for As and Pb, coupled with low to moderate potential ecological risks.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Ríos , Vietnam , Cadmio , Plomo , Medición de Riesgo , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos , Metales Pesados/análisis , Oro , China
15.
J Environ Manage ; 356: 120726, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537456

RESUMEN

Electrochemical technology is a promising technique for separating ammonia from mature landfill leachate. However, the accompanying migration and transformation of coexisting pollutants and strategies for further high-value resourceful utilization of ammonia have rarely received attention. In this study, an electrochemical separation-Rhodopseudomonas palustris electrolysis cell coupled system was initially constructed for efficient separation and conversion of nitrogen in mature landfill leachate to microbial protein with synchronously tracking the transport and conversion of coexisting heavy metals accompanying the process. The results revealed that ammonia concentration in the cathode increased from 40.3 to 49.8% with increasing the current density from 20 to 40 mA/cm2, with less than 3% of ammonia transformation to NO2--N and NO3--N. During ammonia separation, approximately 95% of HM-DOMs (Cr, Cu, Ni, Pb, and Zn) were released into the anolyte due to humus degradation and further diffused to the cathode. A significant correlation was observed between the releases of HM-DOMs. Cu-DOMs accounted for 70.2% of the total Cu content, which was the highest proportion among the heavy metals (HMs). Among the HMs in anolyte, 57.4% of Pb, 52.5% of Ni, and 50.6% of Zn diffused to the cathode, and most of the HMs were removed in the form of hydroxide precipitations due to heavy alkaline catholyte. Compared with the open-circuit condition, the utilization efficiency of NH4+-N in the R. palustris electrolysis cell increased by 445.1% with 47% and 50% increases in final NH4+-N conversion rate and R. palustris biomass, respectively, due to bio-electrochemical enhanced phototrophic metabolism and acid generation for buffering the strong alkalinity of the electrolyte to maintain suitable growth conditions for R. palustris.


Asunto(s)
Amoníaco , Rhodopseudomonas , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Plomo , Electrólisis , Instalaciones de Eliminación de Residuos , Nitrógeno
16.
Nucl Med Biol ; 130-131: 108890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38402673

RESUMEN

BACKGROUND: Targeted alpha therapy is one of the most powerful therapeutical modalities available in nuclear medicine. It's therapeutic potency is based on the nuclides that emit one or several alpha particles providing strong and highly localized therapeutic effects. However, some of these radionuclides, like e.g.223Ra or 225Ac decay in cascades, where the radioactive progeny originating from the consecutive alpha-decays may leave the original vector and cause unwanted irradiation of non-target organs. This progeny, even if partially retained in target tissues by internalization processes, typically do not follow the fate of originally targeted radiopharmaceutical and potentially spread over body following their own biodistribution. In this study we aimed to estimate 211Pb/211Bi progeny fate from the 223Ra surface-labelled TiO2 nanoparticles in vitro and the fate of 211Pb in vivo in a mice model. RESULTS: In vitro stability studies have shown significant differences between the release of the mother 223Ra and its progeny (211Pb, 211Bi) in all the biological matrices that have been tested. The lowest released activities were measured in saline, resulting in less than 5 % of released activity for all nuclides. Contrary to that, the highest released activity of 223Ra of up to 10 % within 48 h was observed in 5 % solution of albumin. The released activity of its progeny; the 211Pb and 211Bi was in the range of 20-40 % in this test medium. Significantly higher released activities of 211Pb and 211Bi compared to 223Ra by at least 10 % was observed in each biological medium, except saline, where no significant differences were observed. The in vivo biodistribution studies results in a mice model, show similar pattern, where it was found that even after accumulation of nanoparticles in target tissues, approximately 10 % of 211Pb is continuously released into the blood stream within 24 h, followed by its natural accumulation in kidneys. CONCLUSION: This study confirms our assumption that the progeny formed in a chain alpha decay of a certain nuclide, in this case the 223Ra, can be released from its original vector, leave the target tissue, relocate and could be deposited in non-target organs. We did not observe complete progeny wash-out from its original target tissues in our model. This indicates strong dependence of the progeny hot atom fate after its release from the original radiopharmaceutical preparation on multiple factors, like their internalization and retention in cells, cell membranes, extracellular matrices, protein binding, etc. We hypothesize, that also the primary tumour or metastasis size, their metabolic activity may significantly influence progeny fate in vivo, directly impacting the dose delivered to non-target tissues and organs. Therefore a bottom-up approach should be followed and detailed pre-/clinical studies on the release and biodistribution of radioactive progeny originating from the chain alpha emitters should be preferably performed.


Asunto(s)
Nanopartículas , Radiofármacos , Ratones , Animales , Radiofármacos/uso terapéutico , Distribución Tisular , Plomo , Radioisótopos/uso terapéutico
17.
Environ Monit Assess ; 196(3): 278, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367088

RESUMEN

The current study investigated wild plant resources and health risk assessment along with northern Pakistan's mafic and ultramafic regions. Ethnobotanical data was collected through field visits and semi-structured questionnaire surveys conducted from local inhabitants and healers. Six potentially toxic elements (PTEs) such as lead (Pb), cadmium (Cd), nickel (Ni), chromium (Cr), manganese (Mn), and zinc (Zn) were extracted with acids and analyzed using atomic absorption spectrophotometer (AAS, Perkin Elmer-7000) in nine selected wild medicinal plants. Contamination factor (CF), pollution load index (PLI), estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI) were used to determine the health risk assessment of the studied medicinal plants. The results showed that the selected medicinal plants were used for the treatments of cough, joint swelling, cardiovascular disorders, toothaches, diabetes, and skin pimples by the local inhabitants due to their low-cost and easy accessibility. The concentrations of Pb (3.4-53 mg kg-1), Cd (0.03-0.39 mg kg-1), Ni (17.5-82 mg kg-1), Cr (29-315 mg kg-1), Mn (20-142 mg kg-1), and Zn (7.4-64 mg kg-1) in the studied medicinal plants were found above the safe limits (except Zn) set by WHO/FAO/USEPA (1984/2010). The Pb contamination factor was significantly (p < 0.05) higher in A. modesta (7.84) and D. viscosa (6.81), and Cd contamination factor was significantly higher in C. officinalis (26.67), followed by A. modesta (8.0) mg kg-1. Based on PTE concentrations, the studied plants are considered not suitable for human consumption purposes. Pollution load index values for A. modesta, A. barbadensis, A. caudatus, A. indica, C. procera (2.93), D. viscosa (2.79), and C. officinalis (2.83), R. hastatus (3.12), and Z. armatum were observed as 1.00, 2.80, 2.29, 2.29, 2.93, 2.79, 2.83, 3.12 and 2.19, respectively. Hazard index values were in order of R. hastatus (1.32 × 10-1) ˃ C. procera (1.21 × 10-1) ˃ D. viscosa (1.10 × 10-1) ˃ A. caudatus (9.11 × 10-2) ˃ A. barbadensis (8.66 × 10-2) ˃ Z. armatum (7.99 × 10-2) ˃ A. indica (6.87 × 10-2) ˃ A. modesta (5.6 × 10-2) ˃ C. officinalis (5.42 × 10-2). The health risk index values suggested that consumption of these plants individually or in combination would cause severe health problems in the consumers. Pearson's correlation results showed a significant correlation (p ≤ 0.001) between Zn and Mn in the studied medicinal plants. The current study suggests that wild medicinal plants should be adequately addressed for PTEs and other carcinogenic pollutants before their uses in the study area. Open dumping of mining waste should be banned and eco-friendly technology like organic amendments application should be used to mitigate PTEs in the study area.


Asunto(s)
Porcelana Dental , Aleaciones de Cerámica y Metal , Metales Pesados , Plantas Medicinales , Contaminantes del Suelo , Titanio , Humanos , Cadmio , Metales Pesados/análisis , Monitoreo del Ambiente/métodos , Pakistán , Plomo , Medición de Riesgo , Contaminantes del Suelo/análisis
18.
Environ Monit Assess ; 196(3): 283, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372826

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) can promote plant growth and development with several beneficial effects, especially in challenging environmental conditions, such as the presence of toxic contaminants. In this study, 49 isolates obtained from Trifolium sp. nodules growing on a Pb/Zn mine site were characterized for PGP traits including siderophores production, phosphate solubilization, extracellular enzymes production, and antifungal activity. The isolates were also screened for their ability to grow at increasing concentrations of NaCl and heavy metals, including lead, zinc, cobalt, copper, nickel, cadmium, and chromium. The findings of our study indicated that isolates Cupriavidus paucula RSCup01-RSCup08, Providencia rettgeri RSPro01, Pseudomonas putida RSPs01, Pseudomonas thivervalensis RSPs03-RSPs09, and Acinetobacter beijerinckii RSAci01 showed several key traits crucial for promoting plant growth, thus demonstrating the greatest potential. Most isolates displayed resistance to salt and heavy metals. Notably, Staphylococcus xylosus RSSta01, Pseudomonas sp. RSPs02, Micrococcus yunnanensis RSMicc01, and Kocuria dechangensis RSKoc01 demonstrated a significant capacity to grow at salt concentrations ranging from 10 to 20%, and isolates including Cupravidus paucula RSCup01-RSCup08 exhibited resistance to high levels of heavy metals, up to 1300 mg/L Pb++, 1200 mg/L Zn++, 1000 mg/L Ni++, 1000 mg/L Cd++, 500 mg/L Cu++, 400 mg/L Co++, and 50 mg/L CrVI+. Additionally, the analysis revealed that metal-resistant genes pbrA, czcD, and nccA were exclusively detected in the Cupriavidus paucula RSCup01 strain. The results of this study provide insights into the potential of plant growth-promoting rhizobacteria strains that might be used as inoculants to improve phytoremediation in heavy metal-contaminated soils.


Asunto(s)
Metales Pesados , Trifolium , Plomo , Monitoreo del Ambiente , Metales Pesados/toxicidad , Zinc , Cloruro de Sodio
19.
Inhal Toxicol ; 36(2): 90-99, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38407183

RESUMEN

OBJECTIVE: Nail salons offer a developing and diverse occupation for many women, especially the new generation. Due to the increasing apprehension surrounding heavy metals in dust caused by filing nails containing dried nail polish, the present study was designed aimed to health risk assessment of heavy metals in breathing zone of nail salon technicians (NSTs). METHODS: This is a cross-sectional study that was conducted in NSTs. The concentration of Cadmium (Cd), Lead (Pb), Nickel (Ni), Chromium (Cr) and Manganese (Mn)in breathing zone of 20 NSTs was determined using ICP-OES. RESULTS: The metal concentrations were in the following order: Mn > Pb > Ni > Cr > Cd with corresponding arithmetic mean values of0.008, 0.0023, 0.0021, 0.001 and 0.0006 mg m-3, respectively, which are exceeded the recommended levels stated in the indoor air guidelines. The average lifetime carcinogenic risk (LCR) for Cr, Cd, Ni and Pb was calculated 0.0084, 0.00054, 0.00026 and 1.44 E - 05, respectively. The LCR values of all metals (except Pb) exceeded the acceptable level set by the USEPA. The mean of Hazard quotients (HQ) for Mn, Cd, Cr, Ni and Pb were calculated to be23.7, 4.74, 2.19, 0.51 and 0.0.24, respectively. The sensitivity analysis showed that, the exposure frequency (EF) for Cr and Ni had the strong effects on generation of both LCR and HQ. Furthermore, the concentrations of Mn, Cd and Pb had strong impacts on the HQ generation and the concentration of Cd and Pb had main effects on LCR generation. CONCLUSION: To effectively reduce pollutant concentration, it is recommended to install a ventilation system near nail salon work tables and conduct continuous monitoring and quality control of nail products.


Asunto(s)
Cadmio , Metales Pesados , Humanos , Femenino , Cadmio/análisis , Exposición por Inhalación/efectos adversos , Exposición por Inhalación/análisis , Monitoreo del Ambiente , Método de Montecarlo , Estudios Transversales , Plomo/análisis , Uñas/química , Metales Pesados/toxicidad , Metales Pesados/análisis , Cromo/toxicidad , Níquel/toxicidad , Manganeso , Medición de Riesgo , China
20.
Sci Total Environ ; 922: 171217, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38417521

RESUMEN

This paper explores the potential of Technosols made from non-hazardous industrial wastes as a sustainable solution for highly acidic iron-rich soils at the Rio Tinto mining site (Spain), a terrestrial Mars analog. These mine soils exhibit extreme acidity (pHH2O = 2.1-3.0), low nutrient availability (non-acid cation saturation < 20 %), and high levels of Pb (3420 mg kg-1), Cu (504 mg kg-1), Zn (415 mg kg-1), and As (319 mg kg-1), hindering plant growth and ecosystem restoration. To address these challenges, the study systematically analyzed selected waste materials, formulated them into Technosols, and conducted a four-month pot trial to evaluate the growth of Brassica juncea under greenhouse conditions. Technosols were tailored by adding varying weight percentages of waste amendments into the mine Technosol, specifically 10 %, 25 %, and 50 %. The waste amendments comprised a blend of organic waste (water clarification sludge, WCS) and inorganic wastes (white steel slag, WSS; and furnace iron slag, FIS). The formulations included: (T0) exclusively mine Technosol (control); (T1) 60 % WCS + 40 % WSS; (T2) 60 % WCS + 40 % FIS; and (T3) 50 % WCS + 16.66 % WSS + 33.33 % FIS. The analyses covered leachate quality, soil pore water chemistry, and plant response (germination and survival rates, plant height, and leaf number). Results revealed a significant reduction in leachable contaminant concentrations, with Pb (26.16 mg kg-1), Zn (4.94 mg kg-1), and Cu (2.29 mg kg-1) dropping to negligible levels and shifting towards less toxic species. These changes improved soil conditions, promoting seed germination and seedling growth. Among the formulations tested, Technosol T1 showed promise in overcoming mine soil limitations, enhancing plant adaptation, buffering against acidification, and stabilizing contaminants through precipitation and adsorption mechanisms. The paper stresses the importance of tailoring waste amendments to specific soil conditions, and highlights the broader implications of the Technosol approach, such as waste valorization, soil stabilization, and insights for Brassica juncea growth in extreme environments, including Martian soil simulants.


Asunto(s)
Marte , Contaminantes del Suelo , Hierro/análisis , Suelo , Ecosistema , Medio Ambiente Extraterrestre , Plomo/análisis , Plantas , Agua/análisis , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...