Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38197883

RESUMEN

Belamcanda chinensis (L.) Redouté, a member of the Iridaceae family, is globally well-known for its medicinal value as clearing away heat, detoxifying, detumescence and pain (Qin 2000). In 2021, spots were observed on 40% B. chinensis leaves and about 28 disease index in Wanzhou District (30°32'N; 108°22'E) of Chongqing. Initial symptoms appeared as circular yellow white, sunken spots lesions, and then expanded into irregular lesions, the center of the spots was beige, external layer was light brown and surrounded by yellow halo. Symptomatic leaf tissues (5 × 5 mm) were cut from the infected margin, surface sterilized with 75% ethanol for 1 min, washed with 3% sodium hypochlorite for 3 min, rinsed three times with sterile water, placed on potato dextrose agar (PDA) medium incubated at 25°C for 7 days in the dark, forty isolates with similar morphology were obtained. Three isolates (SG9、SG20 and SG33) was selected for subsequent research. Colonies color changed from beige to light brown color after 14 days on PDA medium. Fungal colonies transformed from beige to brown at the edges after 28 days and light brown on top. Ascomata dark brown, ellipsoidal to globose 116.6 to 253.3 × 89.6 to 172.6 µm in diamensions. Asci stipitate, cylindrical with obtuse ends, and 69.1 to 114.7 × 10.2 to 24.1 µm (n = 30) in size, with eight overlapping linearly biseriate ascospores. Ascospores brown, narrowly fusiform, straight or slightly curved with three transversely septate, slightly constricted at septa, and 9.7 to 12.6 × 27.6 to 32.6 µm (n = 30). These characteristics are consistent with Phaeosphaeria sp. reported by Quaedvlieg et al in 2013. DNA was extracted from representative isolates. The internal transcribed spacer (ITS) region, the large subunit rDNA (LSU), the small subunit rDNA (SSU) and the RNA polymerase II second largest subunit (RPB2) genes were amplified for Polymerase chain reaction (PCR) by used ITS1/ITS4, LR5/LROR, NS1/NS4, and RPB2-5f2/RPB2-7cr primers (White et al. 1990; Vilgalys et al. 1990; Qi M W. et al. 2008; De G. J. et al. 1992). The sequences were submitted to NCBI GenBank: SG-G9 (ITS, OR701701; LSU, OR701699; SSU, OR701700; RPB2, OR738464); SG-G20 (ITS, OQ748032; LSU, OQ780728; SSU, OQ780723; RPB2, OQ779979); SG-G33 (ITS, OQ748033; LSU, OQ780729; SSU, OQ780722; RPB2, OQ779980). A phylogenetic analysis revealed a 99% similarity to the Phaeosphaeria caricicola CBS 603.86 (ITS, KF251182; LSU, GQ387590; SSU, GQ387529; RPB2, KF252189) sequences. Mycelial agar plugs (5-mm diameter) from a 7-day-old PDA culture of a fungal isolate were placed onto pinpricked leaves of three two-year-old B. chinensis plants. While the sterile PDA plugs inoculated in pinpricked leaves of B. chinensis as controls. Inoculated plants were placed in a greenhouse at 25°C and remained 95±1% relative humidity. The inoculated leaves of treatment developed symptoms after 20 days, whereas no symptoms occurred on controls, fulfilling Koch's postulates. The experiments were repeated three times. The fungus was re-isolated and was identical to original isolate by morphologically and molecularly. As far as we know, P. caricicola can cause diseases on carex plants and has been found in Switzerland. This is the first report of P. caricicola causing leaf spot on B. chinensis in China. Along with recording the occurrence of this disease, plant disease management strategies need to be established to reduce losses.

2.
Plant Dis ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37278546

RESUMEN

Shine muscat is a Vitis vinifera hybrid (Akitsu-21 × Hakunan), that has emerged as a popular table grape cultivar in China. In recent years, shine muscat has been widely cultivated with 66,667 ha being cultivated in 2021. In November 2021, symptoms of fruit spot were observed on shine muscat during the storage at 0~3℃ and 85%~90% RH, while stored at National Agricultural Product Preservation Engineering Technology Research Center, in Tianjin (N 116°20', E 39°09'), China. The incidence of this disease was about 35%. Affected grape berries initially had small brown spots. The spots on the fruit expanded to an ellipse or circular sunken area with a black center. The central peel of the diseased spots were ruptured and collapsed. The diseased fruits eventually fell off the vine. To isolate the pathogen, grape peels with typical symptoms were cut into small pieces, sterilized with 75% ethanol for 45-sec, rinsed with sterilized distilled water three times, and then transferred onto potato dextrose agar (PDA) medium.The plates were incubated at 25°C in the dark. After 10 days, 26 single spore isolates with similar morphology were obtained from 30 symptomatic grape berries. Fungal colonies were grayish brown, with abundant conidia on the obverse-side on PDA. Conidiophores were cylindrical, straight with unbranched, solitary or clustered, elongation at the tip and ranged in size from 3.2-6.8 × 35.6-150.9 µm (n=50). Conidia were grew in chains, ovoid, aseptate, and 2.2-6.0 × 8.3-16.8 µm (n=50). The morphological characteristics were consistent with Cladosporium allicinum (Bensch et al. 2012). Molecular data were also used to support the microscopic identification by extracting genomic DNA from 26 isolates using a Plant Genomic DNA kit (Tiangen, China). Amplicons were generated for the internal transcribed spacer (ITS), translation elongation factor 1-alpha(tef1-α), and actin (act) using the following primers ITS1/ITS4, EF1-728F/ EF1-986R and ACT-512F/ ACT-783R, respectively (Bensch et al. 2012). Blast analysis showed that three amplified fragments of 26 isolates were highly similar to C. allicinum, with 98.96~100% sequence identity with Cladosporium allicinum accessions in GenBank (ITS, OK661041; tef1-α, MF473332; act, LN834537). Three amplified fragments of representative isolate YG03 were deposited in GenBank with accession nos. OP799670 for ITS, OP888001 for tef1-α and OP887999 for act, respectively. Neighbor-joining trees based on concatenated sequences of three genes were constructed using MEGA5.2. The results showed that the strain YG03 from shine muscat was closely related to C. allicinum. Pathogenicity tests of 26 isolates were performed on healthy shine muscat berries using pin pricks and a humidor. In each wound, 5 µL of conidial suspension (1×106 conidia/mL) and sterile distilled water were inoculated on 30 berries, and maintained in a dark incubator at 25°C, 90% relative humidity. Each treatment was repeated twice. After 10 days, the wounded berries inoculated with the spore suspension showed dark brown spots, similar to the original diseased fruits, while no symptoms were observed on the control treament. Pathogen re-isolated from inoculated fruits were identical to the original strains on colony and microscopic morphology, and identified to Cladosporium allicinum based on act gene by molecular method, thereby fulfilling Koch's postulates. C.allicinum has been reported causing leaf spot on 11 host plants around the world (Bensch et al. 2012, 2015; Quaedvlieg et al. 2014; Jurisoo et al. 2019). To our knowledge, this is the first report of C. allicinum causing black spot on fruit of Vitis vinifera worldwide. The identification of this disease could establish a foundation for developing management strategies to reduce losses in storage period.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...