Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.076
Filtrar
1.
Talanta ; 236: 122838, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34635228

RESUMEN

Medium-resolution (MR-NMR) and time-domain NMR relaxometry (TD-NMR) using benchtop and low-field NMR instruments are powerful tools to tackle fuel adulteration issues. In this work, for the first time, we investigate the possibility of enhancing the low-field NMR capability on fuel analysis using data fusion of MR and TD-NMR. We used the ComDim (Common Dimensions Analysis) multi-block analysis to join the data, which allowed exploration, classification, and quantification of common adulterations of diesel fuel by vegetable oils, biodiesel, and diesel of different sources as well as the sulfur content. After data exploration using ComDim, classification (applying linear discriminant analysis, LDA), and regression (applying multiple linear regression, MLR), models were built using ComDim scores as input variables on the LDA and MLR analyses. This approach enabled 100% of accuracy in classifying diesel fuel source (refinery), sulfur content (S10 or S500), vegetable oil, and biodiesel source. Moreover, in the quantification step, all MLR models showed a root mean square error of prediction (RMSEP) and the residual prediction deviation (RPD) values comparable to the literature for determining diesel, vegetable oil, and biodiesel contents.


Asunto(s)
Biocombustibles , Gasolina , Biocombustibles/análisis , Gasolina/análisis , Espectroscopía de Resonancia Magnética , Monitoreo Fisiológico , Aceites Vegetales
2.
J Hazard Mater ; 421: 126732, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34332475

RESUMEN

Bio-heavy oil (BHO) is a renewable fuel, but its efficient use is problematic because its combustion may emit hazardous air pollutants (e.g., polycyclic aromatic hydrocarbon (PAH) compounds, NOx, and SOx). Herein, catalytic fast pyrolysis over HZSM-5 zeolite was applied to upgrading BHO to drop-in fuel-range hydrocarbons with reduced contents of hazardous species such as PAH compounds and N- and S-containing species (NOx and SOx precursors). The effects of HZSM-5 desilication and linear low-density polyethylene (LLDPE) addition to the feedstock on hydrocarbon production were explored. The apparent activation energy for the thermal decomposition of BHO was up to 37.5% lowered by desilicated HZSM-5 (DeHZSM-5) compared with HZSM-5. Co-pyrolyzing LLDPE with BHO increased the content of drop-in fuel-range hydrocarbons and decreased the content of PAH compounds. The DeHZSM-5 was effective in producing drop-in fuel-range hydrocarbons from a mixture of BHO and LLDPE and suppressing the formation of N- and S-containing species and PAH compounds. The DeHZSM-5 enhanced the hydrocarbon production by up to 58.5% because of its enhanced porosity and high acid site density compared to its parent HZSM-5. This study experimentally validated that BHO can be upgraded to less hazardous fuel via catalytic fast co-pyrolysis with LLDPE over DeHZSM-5.


Asunto(s)
Contaminación del Aire , Biocombustibles , Biomasa , Catálisis , Sustancias Peligrosas , Calor
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120302, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34461522

RESUMEN

This paper describes a new method to obtain NIR spectra of liquid and gas samples by diffuse reflectance, which is especially suitable for handheld spectrophotometers, since most of these instruments are designed to acquire spectrum using this geometry. The core of the method is a diffuse reflectance cell, which consists of a vial containing a mixture of the liquid or gas sample (rare medium) and a powder (dense medium). Using this strategy, no adaptation is required to measure spectra with most portable NIR spectrometers. This new method was used to obtain NIR spectra of several liquids and gases, which were compared with traditional transmittance spectra. As a proof of concept, measurements of biodiesel/vegetable oil/diesel blends were used to build multivariate calibrations to predict the contents of biodiesel and vegetable oil in diesel blends using benchtop and handheld FT-NIR spectrophotometers. This low-cost method was demonstrated to be suitable for overcoming problems related to the handling of viscous samples and expand the applications with portable NIR instruments.

4.
Ciênc. rural (Online) ; 52(3): e20210213, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACSEXPRESS | ID: biblio-1339661

RESUMEN

ABSTRACT: Sunflower produces achenes and oil of good quality, besides serving for production of silage, forage and biodiesel. Growth modeling allows knowing the growth pattern of the crop and optimizing the management. The research characterized the growth of the Rhino sunflower cultivar using the Logistic and Gompertz models and to make considerations regarding management based on critical points. The data used come from three uniformity trials with the Rhino confectionery sunflower cultivar carried out in the experimental area of the Federal University of Santa Maria - Campus Frederico Westphalen in the 2019/2020 agricultural harvest. In the first, second and third trials 14, 12 and 10 weekly height evaluations were performed on 10 plants, respectively. The data were adjusted for the thermal time accumulated. The parameters were estimated by ordinary least square's method using the Gauss-Newton algorithm. The fitting quality of the models to the data was measured by the adjusted coefficient of determination, Akaike information criterion, Bayesian information criterion, and through intrinsic and parametric nonlinearity. The inflection points (IP), maximum acceleration (MAP), maximum deceleration (MDP) and asymptotic deceleration (ADP) were determined. Statistical analyses were performed with Microsoft Office Excel® and R software. The models satisfactorily described the height growth curve of sunflower, providing parameters with practical interpretations. The Logistics model has the best fitting quality, being the most suitable for characterizing the growth curve. The estimated critical points provide important information for crop management. Weeds must be controlled until the MAP. Covered fertilizer applications must be carried out between the MAP and IP range. ADP is an indicator of maturity, after reaching this point, the plants can be harvested for the production of silage without loss of volume and quality.


RESUMO: O girassol produz aquênios e óleo de qualidade, além de servir para produção de silagem, forragem e biodiesel. A modelagem de crescimento permite conhecer o padrão de crescimento da cultura e otimizar o manejo. O objetivo deste trabalho foi caracterizar o crescimento da cultivar de girassol Rhino por meio dos modelos Logístico e Gompertz e fazer considerações a respeito do manejo com base em pontos críticos. Os dados utilizados são oriundos de três ensaios de uniformidade com a cultivar de girassol confeiteiro Rhino, conduzidos na área experimental da Universidade Federal de Santa Maria, Campus Frederico Westphalen, na safra 2019/2020. Foram realizadas 14, 12 e 10 avaliações semanais de altura em 10 plantas, respectivamente, no primeiro, segundo e terceiro ensaio. Os dados foram ajustados em função da soma térmica acumulada. Os parâmetros foram estimados por meio do método dos mínimos quadrados ordinários, usando o algoritmo de Gauss-Newton. A qualidade de ajuste dos modelos aos dados foi medida pelo coeficiente de determinação ajustado, critério de determinação de Akaike, critério bayesiano de informação, e por meio da não linearidade intrínseca e paramétrica. Foram determinados os pontos de inflexão (IP), máxima aceleração (MAP), máxima desaceleração (MDP) e desaceleração assintótica (ADP). As análises estatísticas foram realizadas com Microsoft Office Excel® e o software R. Os modelos descreveram de forma satisfatória a curva de crescimento da altura do girassol, fornecendo parâmetros com interpretações práticas. O modelo Logístico apresenta melhor qualidade de ajuste, sendo o mais adequado para caracterização da curva de crescimento. Os pontos críticos estimados fornecem informações importantes para o manejo da cultura. As plantas daninhas devem ser controladas até o MAP. As aplicações de fertilizantes em cobertura devem ser realizadas entre MAP e IP. O ADP é um indicador de maturidade, após atingir este ponto, as plantas podem ser colhidas para a produção de silagem sem perda de volume e qualidade.

5.
3 Biotech ; 11(10): 429, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34603908

RESUMEN

Non-renewable fossil fuels such as bitumen, coal, natural gas, oil shale, and petroleum are depleting over the world owing to unrestricted consumption. Biofuels such as biodiesel, biobutanol, bioethanol, and biogas are considered an eco-friendly and cost-effective alternatives of fossil fuels. For energy sustainability, the production of advanced biofuels is required. The advancement of genetic and metabolic engineering in microbial cells played a significant contribution to biofuels overproduction. Essential approaches such as next-generation sequencing technologies and CRISPR/Cas9-mediated genome editing of microbial cells are required for the mass manufacture of biofuels globally. Advanced "omics" approaches are used to construct effective microorganisms for biofuels manufacturing. A new investigation is required to augment the production of lignocellulosic-based biofuels with minimal use of energy. Advanced areas of metabolic engineering are introduced in the manufacture of biofuels by the use of engineered microbial strains. Genetically modified microorganisms are used for the production of biofuels in large quantities at a low-cost.

6.
Crit Rev Biotechnol ; : 1-22, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34641754

RESUMEN

Ammonia oxidizing bacteria (AOB) play a key role in the biological oxidation of ammonia to nitrite and mark their significance in the biogeochemical nitrogen cycle. There has been significant development in harnessing the ammonia oxidizing potential of AOB in the past few decades. However, very little is known about the potential applications of AOB in the bioenergy sector. As alternate sources of energy represent a thrust area for environmental sustainability, the role of AOB in bioenergy production becomes a significant area of exploration. This review highlights the role of AOB in bioenergy production and emphasizes the understanding of the genetic make-up and key cellular biochemical reactions occurring in AOB, thereby leading to the exploration of its various functional aspects. Recent outcomes in novel ammonia/nitrite oxidation steps occurring in a model AOB - Nitrosomonas europaea propel us to explore several areas of environmental implementation. Here we present the significant role of AOB in microbial fuel cells (MFC) where Nitrosomonas sp. play both anodic and cathodic functions in the generation of bioelectricity. This review also presents the potential role of AOB in curbing fuel demand by producing alternative liquid fuel such as methanol and biodiesel. Herein, the multiple roles of AOB in bioenergy production namely: bioelectricity generation, bio-methanol, and biodiesel production have been presented.

7.
Waste Manag ; 135: 448-456, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34624743

RESUMEN

In the present study, a combined technology for energetic brewery spent grain (BSG) use in co-digestion with sewage sludge (SS) was presented. A holistic approach that includes the impact of co-substrates and their carriers on the anaerobic digestion (AD) process, and the energetic aspects, was involved. Prior to AD, BSG was pretreated involving the hydrodynamic cavitation (HC); two different carriers were applied: MPW (municipal pre-settled wastewater) and mature landfill leachate (MLL). An orifice plate with a conical concentric hole of 3/10 mm (inlet/outlet diameter) was applied as cavitation device. The initial pressure was 7 bar and the number of recirculation passes through the cavitation zone was 30. The AD experiments were performed in semi-flow reactors, under mesophilic conditions at HRT of 20 and 21 d. In both co-digestion series, the constant co-substrate dose of 6% v/v was adopted. In the presence of cavitated BSG and MPW, a significant increase in biogas/methane production was provided as compared to SS mono-digestion, with the related improvement in kinetic constant by 3.5%. The average biogas yield was 0.48 ± 0.03 m3 kg-1 VS added, while in the control run 0.41 ± 0.03 m3 kg-1 VS added. Using cavitated BSG and MLL, such a beneficial effect was not observed. In both co-digestion series, slightly lower VS removal (as for the control) and stable process performance occurred. Moreover, the improved energy balance was provided. Due to the technological aspects, only co-digestion of cavitated BSG and MPW with SS is recommended for implementation into a full-scale.


Asunto(s)
Biocombustibles , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Digestión , Metano , Aguas Residuales
8.
Sci Total Environ ; : 150995, 2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34666095

RESUMEN

Biodiesel production from microalgae has gained significant interest recently due to the growing energy demand and non-renewable nature of petroleum. However, high cost of production and environmental health related issues like excess use of inorganic fertilizers, eutrophication are the major constraints in commercial-scale biodiesel production. Besides this, solid wastes (garden-based) management is also a global concern. In the present study, to overcome these limitations vermicompost extract was tested as nutrient source to enhance growth performance and lipid production from a freshwater microalga (Graesiella emersonii MN877773). Garden wastes were first converted into vermicompost manure and its extract (aerobic and anaerobically digested) was prepared. The efficacy of the extract was then tested in combination with BG11 medium. The mixotrophic cultivation of microalgae in anaerobically digested vermicompost extract at 50:50 combination with BG11 medium enhanced the cell biomass (0.64 g d. wt. L-1) and lipid productivity (3.18 mg L-1 day-1) of microalgae by two times. Moreover, the combination also improved the saturated (methyl palmitate) and monounsaturated fatty acids (oleic acid) content in the test algae. The quality of biodiesel also complies with all the properties of biodiesel standard provided by India, the USA, and Europe except the cold filter plugging property. The combination was also found to improve the cell biomass (0.041 g L-1) as compared to BG11 medium in mass-scale cultivation. Hence, the study proved that G. emersonii grown in media supplemented with garden waste-based vermicompost extract had significant potential for mass-scale biodiesel and bioproduct production.

9.
J Environ Manage ; 300: 113831, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34649321

RESUMEN

Wastewater and activated sludge present a major challenge worldwide. Wastewater generated from large and small-scale industries, laundries, human residential areas and other sources is emerging as a main problem in sanitation and maintenance of smart/green cities. During the last decade, different technologies and processes have been developed to recycle and purify the wastewater. Currently, identification and fundamental consideration of development of more advanced microbial-based technologies that enable wastewater treatment and simultaneous resource recovery to produce bioenergy, biofuels and other value-added compounds (organic acids, fatty acids, bioplastics, bio-pesticides, bio-surfactants and bio-flocculants etc.) became an emerging topic. In the last several decades, significant development of bioprocesses and techniques for the extraction and recovery of mentioned valuable molecules and compounds from wastewater, waste biomass or sludge has been made. This review presents different microbial-based process routes related to resource recovery and wastewater application for the production of value-added products and bioenergy. Current process limitations and insights for future research to promote more efficient and sustainable routes for this under-utilized and continually growing waste stream are also discussed.


Asunto(s)
Aguas Residuales , Purificación del Agua , Biocombustibles , Biomasa , Humanos , Aguas del Alcantarillado
10.
DNA Res ; 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34664644

RESUMEN

Caper spurge, Euphorbia lathyris L., is an important energy crop and medicinal crop. Here, we generated a high-quality, chromosome-level genome assembly of caper spurge using Oxford Nanopore sequencing, Illumina sequencing, and Hi-C technology. The final genome assembly was ∼988.9 Mb in size, 99.8% of which could be grouped into 10 pseudochromosomes, with contig and scaffold N50 values of 32.6 and 95.7 Mb, respectively. A total of 651.4 Mb repetitive sequences and 36,342 protein-coding genes were predicted in the genome assembly. Comparative genomic analysis showed that caper spurge and castor bean clustered together. We found that no independent whole-genome duplication event had occurred in caper spurge after its split from castor bean, and recent substantial amplification of LTR retrotransposons (LTR-RTs) has contributed significantly to its genome expansion. Furthermore, based on gene homology searching, we identified a number of candidate genes involved in the biosynthesis of fatty acids and triacylglycerols. The reference genome presented here will be highly useful for the further study of the genetics, genomics, and breeding of this high-value crop, as well as for evolutionary studies of spurge family and angiosperms.

11.
Microsc Res Tech ; 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34664754

RESUMEN

Investigation of alternative energy sources is need of current time due to growing power crisis and associated environmental issues. Biodiesel is considered as sustainable power source and promising alternative to fossil fuels. Therefore, our current investigation aimed to identify micromorphological characters of 10 novel nonedible oil-yielding seeds through scanning electron microscopy. It was revealed from light microscopic study that there is variation in seed size from 3 to 15 mm in length and 2 to 11 mm in width. Likewise, a huge variation in color was observed such as light green, greenish yellow, blackish brown, and various shades of brown. Presence and absence of Hilum was observed, and compression of seeds varied from depressed, lateral, and dorsoventral. Seed's shape differs from ovate, clavate, triangular ovate, cuneiform, ovoid, and elliptical shape. Seed oil content fall in range of 18-58% (wt/wt). Free fatty acid content of the seeds varies from 0.3 to 3.1 mg KOH/g. Ultrastructure of seeds exhibited huge variation in shape, size, periclinal wall, anticlinal wall, and surface ornamentation. Nonedible seeds varied in wall structure from angular, wavy, dentate entire, irregular, puzzled, elongated, even, and polygonal. The periclinal wall arrangements show alteration from flat, looped, raised, depressed, lofty, even, pentagonal, polygonal, and undulate seed margins. Outcomes of this investigation recommended that scanning electron microscopy could act as a helpful tool in disclosing the hidden micromorphological characters among nonedible oil-yielding seeds and subsequently helping in correct, authentic seed identification and classification as potential feedstock for biodiesel.

12.
Artículo en Inglés | MEDLINE | ID: mdl-34661706

RESUMEN

Given the grave concerns over increasing consumption of petroleum resources and dramatic environmental changes arising from carbon dioxide emissions worldwide, microbial biosynthesis of fatty acid ethyl ester (FAEE) biofuels as renewable and sustainable replacements for petroleum-based fuels has attracted much attention. As one of the most important microbial chassis, the nonconventional oleaginous yeast Yarrowia lipolytica has emerged as a paradigm organism for the production of several advanced biofuels and chemicals. Here, we report the engineering of Y. lipolytica for use as an efficient dual biocatalytic system for in situ and one-pot production of FAEEs from renewable feedstock. Compared to glucose with 5.7% (w/w) conversion rate to FAEEs, sunflower seed oil in the culture medium was efficiently used to generate FAEEs with 84% (w/w) conversion rate to FAEEs by the engineered Y. lipolytica strain GQY20 that demonstrates an optimized intercellular heterologous FAEE synthesis pathway. In particular, the titer of extracellular FAEEs from sunflower seed oil reached 9.9 g/L, 10.9-fold higher than that with glucose as a carbon source. An efficient dual biocatalytic system combining ex vivo and strengthened in vitro FAEE production routes was constructed by overexpression of a lipase (Lip2) variant in the background strain GQY20, which further increased FAEEs levels to 13.5 g/L. Notably, deleting the ethanol metabolism pathway had minimal impact on FAEE production. Finally, waste cooking oil, a low-cost oil-based substance, was used as a carbon source for FAEE production in the Y. lipolytica dual biocatalytic system, resulting in production of 12.5 g/L FAEEs. Thus, the developed system represents a promising green and sustainable process for efficient biodiesel production. KEY POINTS: • FAEEs were produced by engineered Yarrowia lipolytica. • A Lip2 variant was overexpressed in the yeast to create a dual biocatalytic system. • Waste cooking oil as a substrate resulted in a high titer of 12.5 g/L FAEEs.

13.
ACS Omega ; 6(39): 25124-25137, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34632172

RESUMEN

This research work is focused on the investigation of the optimum condition for parsley seed oil (PSO) trans-esterification using a heterogeneous (CCB) and homogenous catalyst (KOH). The process parameters (alcohol: oil ratio, temperature, and catalyst loading) were varied to examine their effect on the percentage biodiesel yield using a Box-Behnken design embedded with the response surface methodology (RSM). Also, the heterogeneous catalyst was synthesized by calcining waste chicken bones at 900 °C for 4 h. Thereafter, scanning electron microscopy (SEM), X-ray fluorescence (XRF), energy-dispersive X-ray spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis were utilized to determine the morphology and elemental composition. Thermogravimetric analysis (TGA) was also adopted to assess the effect of calcination temperature on the prepared catalyst. The characterization analysis revealed the presence of hydroxyapatite as the major component, and the reusability test showed that it exhibited good catalytic performance for PSO transesterification. However, the optimization study revealed that the optimum reaction conditions of 9:1 alcohol: ratio, 60 °C reaction temperature, and 3 wt % catalysts gave 90% biodiesel yield, while the homogenous catalyst (used as the control transesterification experiment) under the same conditions gave an average yield of 96.33%. Gas chromatography-mass spectrometry (GC-MS) was utilized to characterize the produced biodiesel. Furthermore, the fuel characteristics of biodiesel were within the specifications of the ASTM D6751.

14.
Microb Cell Fact ; 20(1): 195, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34627248

RESUMEN

BACKGROUND: Contemporary biotechnology focuses on many problems related to the functioning of developed societies. Many of these problems are related to health, especially with the rapidly rising numbers of people suffering from civilization diseases, such as obesity or diabetes. One factor contributing to the development of these diseases is the high consumption of sucrose. A very promising substitute for this sugar has emerged: the polyhydroxy alcohols, characterized by low caloric value and sufficient sweetness to replace table sugar in food production. RESULTS: In the current study, yeast belonging to the Yarrowia clade were tested for erythritol, mannitol and arabitol production using crude glycerol from the biodiesel and soap industries as carbon sources. Out of the 13 tested species, Yarrowia divulgata and Candida oslonensis turned out to be particularly efficient polyol producers. Both species produced large amounts of these compounds from both soap-derived glycerol (59.8-62.7 g dm-3) and biodiesel-derived glycerol (76.8-79.5 g dm-3). However, it is equally important that the protein and lipid content of the biomass (around 30% protein and 12% lipid) obtained after the processes is high enough to use this yeast in the production of animal feed. CONCLUSIONS: The use of waste glycerol for the production of polyols as well as utilization of the biomass obtained after the process for the production of feed are part of the development of modern waste-free technologies.

15.
Trends Biotechnol ; 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34627647

RESUMEN

Microalgal biotechnology research continues to expand due to largely unexplored marine environments and growing consumer interest in healthy products. Thraustochytrids, which are marine oleaginous protists, are known for their production of bioactives with significant applications in nutraceuticals, pharmaceuticals, and aquaculture. A wide range of high-value biochemicals, such as nutritional supplements (omega-3 fatty acids), squalene, exopolysaccharides (EPSs), enzymes, aquaculture feed, and biodiesel and pigment compounds, have been investigated. We discuss thraustochytrids as potential feedstocks to produce various bioactive compounds and advocate developing a biorefinery to offset production costs. We anticipate that future advances in cell manufacturing, lipidomic analysis, and nanotechnology-guided lipid extraction would facilitate large-scale cost-competitive production through these microbes.

16.
Bioenergy Res ; : 1-27, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34603592

RESUMEN

The excessive utilization of petroleum resources leads to global warming, crude oil price fluctuations, and the fast depletion of petroleum reserves. Biodiesel has gained importance over the last few years as a clean, sustainable, and renewable energy source. This review provides knowledge of biodiesel production via transesterification/esterification using different catalysts, their prospects, and their challenges. The intensive research on homogeneous chemical catalysts points to the challenges in using high free fatty acids containing oils, such as waste cooking oils and animal fats. The problems faced are soap formation and the difficulty in product separation. On the other hand, heterogeneous catalysts are more preferable in biodiesel synthesis due to their ease of separation and reusability. However, in-depth studies show the limited activity and selectivity issues. Using biomass waste-based catalysts can reduce the biodiesel production cost as the materials are readily available and cheap. The use of an enzymatic approach has gained precedence in recent times. Additionally, immobilization of these enzymes has also improved the statistics because of their excellent functional properties like easy separation and reusability. However, free/liquid lipases are also growing faster due to better mass transfer with reactants. Biocatalysts are exceptional in good selectivity and mild operational conditions, but attractive features are veiled with the operational costs. Nanocatalysts play a vital role in heterogeneous catalysis and lipase immobilization due to their excellent selectivity, reactivity, faster reaction rates owing to their higher surface area, and easy recovery from the products and reuse for several cycles.

17.
Front Bioeng Biotechnol ; 9: 624859, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604181

RESUMEN

The objective of the current work was to investigate the potential of halophilic bacterial isolates for efficient utilization of crude glycerol from algal biodiesel waste into polyhydroxyalkanoates (PHAs) a green plastic. Screening of the isolates was directly done in algal biodiesel waste residue containing solid agar plates supplemented with Nile red. Crude glycerol is a biodiesel waste whose bioconversion into value-added products provides an alternative for efficient management with dual benefit. For the scale-up studies of PHAs, Halomonas spp. especially H. daqingensis was observed as a potential candidate growing well in 3% Algal biodiesel waste residue (ABWR), 5% NaCl supplementation at 35°C within 48 h of incubation. Maximum Cell dry weight (CDW) of 0.362 ± 0.001 g and 0.236 ± 0.003 g PHA was obtained with H. daqingensis when grown in the fermentor with 0.5 vvm air flow rate and 200 rpm containing 3% ABWR supplemented with 5% NaCl at 35°C incubation temperature for 48 h. ABWR can serve as a sole substrate for PHA production at an industrial scale serving two approaches: getting rid of the biodiesel industrial waste containing high amount of glycerol besides using waste replacing commercial substrate thereby reducing the cost of the product.

18.
J Mater Chem B ; 9(37): 7597-7607, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34596205

RESUMEN

Enzyme immobilization has been accepted as a powerful technique to solve the drawbacks of free enzymes such as limited activity, stability and recyclability under harsh conditions. Different from the conventional immobilization methods, enzyme immobilization in inorganic hybrid nanoflowers was executed in a biomimetic mineralization manner with the advantages of mild reaction conditions, and thus it was beneficial to obtain ideal biocatalysts with superior characteristics. The key factors influencing the formation of enzyme-based inorganic hybrid nanoflowers were elucidated to obtain a deeper insight into the mechanism for achieving unique morphology and improved properties of immobilized enzymes. To date, immobilized enzymes in inorganic hybrid nanoflowers have been successfully applied in biocatalysis for preparing medical intermediates, biodiesel and biomedical polymers, and solving the environmental or food industrial issues such as the degradation of toxic dyes, pollutants and allergenic proteins. Moreover, they could be used in the development of various biosensors, which provide a promising platform to detect toxic substances in the environment or biomarkers associated with various diseases. We hope that this review will promote the fundamental research and wide applications of immobilized enzymes in inorganic hybrid nanoflowers for expanding biocatalysis and biosensing.

19.
Curr Opin Insect Sci ; 48: 44-49, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34597858

RESUMEN

Insect production provides an opportunity to solve problems in our food system. Producers are focused on redirecting waste streams to strive for a zero waste system. By-products and left-over substrates generated include: frass, chitin, and lipids. Frass can be beneficial as a plant fertilizer. It is also known to exhibit anti-microbial and anti-pathogenic properties that may be utilized as a potential insecticide. Chitin has similar fertilizer and anti-pathogen properties. Chitin also produces anti-inflammatory and antimicrobial properties, potentially improving immune responses in animals. Fatty acids found in lipids may serve as environmentally friendly biodiesel. Additionally, the oleic acids found in lipids have known health benefits for humans and other animals. As insect systems expand, zero waste goals will increase in importance.

20.
Chemosphere ; 288(Pt 2): 132442, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34606898

RESUMEN

Considering the momentous cost drivers in energy efficient algal biorefinery processes, a green alternative in extracting lipid from microalgae is anticipated. Switchable solvent system using tertiary amines namely DMBA (Dimethylbenzylamine), DMCHA (Dimethylcyclohexylamine), and DIPEA (Diisopropylethylamine) for lipid extraction from wet hypersaline microalgae was investigated in this study. Interestingly, present study showed that at 1:1 (v/v of fresh DMBA solvent: microalgal biomass), and for 1 h extraction time, the lipid yield was 41.9, 26.6, and 33.3% for Chlorella sp. NITT 05, Chlorella sp. NITT 02, and Picochlorum sp. NITT 04, respectively and for recovered DMBA solvent, at 1:1 (v/v) and for 1 h extraction time, the lipid yield was 40.8, 25.97, and 32%, respectively. Similarly, lipid extraction using DMCHA solvent for Chlorella sp. NITT 05, Chlorella sp. NITT 02, and Picochlorum sp. NITT 04 at 1:1 (v/v of solvent: microalgal biomass) and 1 h extraction time showed 34.28, 24.24 and 23.33% lipids, respectively for fresh solvent and 34.01, 24.24 and 23.18% for recovered solvent respectively; while DIPEA was not competent in lipid extraction from three tested microalgae. FAME profile revealed the presence of saturated fatty acids as 43.04%, 40.98%, 38.45% and monounsaturated fatty acids as 28.38%, 27.05%, 23.3% for Chlorella sp. NITT05, Picochlorum sp. NITT04, Chlorella sp. NITT02, respectively. This study attributes Chlorella sp. NITT05 and Picochlorum sp. NITT04 to be ideal algal species for biodiesel production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...