Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.414
Filtrar
1.
Extremophiles ; 26(1): 7, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34993644

RESUMEN

As we aim to expand human presence in space, we need to find viable approaches to achieve independence from terrestrial resources. Space biomining of the Moon, Mars and asteroids has been indicated as one of the promising approaches to achieve in-situ resource utilization by the main space agencies. Structural and expensive metals, essential mineral nutrients, water, oxygen and volatiles could be potentially extracted from extraterrestrial regolith and rocks using microbial-based biotechnologies. The use of bioleaching microorganisms could also be applied to space bioremediation, recycling of waste and to reinforce regenerative life support systems. However, the science around space biomining is still young. Relevant differences between terrestrial and extraterrestrial conditions exist, including the rock types and ores available for mining, and a direct application of established terrestrial biomining techniques may not be a possibility. It is, therefore, necessary to invest in terrestrial and space-based research of specific methods for space applications to learn the effects of space conditions on biomining and bioremediation, expand our knowledge on organotrophic and community-based bioleaching mechanisms, as well as on anaerobic biomining, and investigate the use of synthetic biology to overcome limitations posed by the space environments.


Asunto(s)
Biotecnología , Minería , Biodegradación Ambiental , Humanos
2.
Braz. j. biol ; 82: e250700, 2022.
Artículo en Inglés | LILACS-Express | MEDLINE, LILACSEXPRESS | ID: biblio-1278476

RESUMEN

Abstract The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.


Resumo Mutações são alterações genéticas nas sequências do genoma e têm papel significativo na biotecnologia, genética e biologia molecular, até mesmo para descobrir as sequências do genoma de um DNA celular junto com o sequenciamento do RNA viral. As mutações são alterações no DNA que podem ser naturais ou espontâneas e induzidas devido a reações bioquímicas ou radiações que danificam o DNA celular. Há outra causa de mutações, conhecida como transposons ou genes saltadores, que podem mudar sua posição no genoma durante a meiose ou a replicação do DNA. Os elementos transponíveis podem induzir por si próprios no genoma devido a mecanismos celulares e moleculares, incluindo hipermutação que causou a localização dos elementos transponíveis para se moverem dentro do genoma. O uso de mutações induzidas para estudar a mutagênese em plantas cultivadas é muito comum, bem como um método promissor para a triagem de plantas cultivadas com características novas e aprimoradas para a melhoria da produtividade e da produção. A utilização de mutações de inserção por meio de transposons ou genes saltadores geralmente gera alelos mutantes estáveis ​​que são marcados quanto à presença ou ausência de genes saltadores ou elementos transponíveis. Os elementos transponíveis podem ser usados ​​para a identificação de genes mutados em plantas de cultivo e até mesmo para a inserção estável de elementos transponíveis em plantas de cultivo mutadas. As proteínas de ligação ao nucleotídeo guanina (GTP) têm papel importante na indução de tolerância em plantas de arroz para combater as condições de estresse abiótico.

3.
Bioresour Technol ; 343: 126097, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34626758

RESUMEN

Lignocellulosic wastes were recently considered as biomass resources, however, its conversion to valuable products is still immature although researchers have put lots of effort into this issue. This article reviews the key challenges of the biorefinery utilizing lignocellulosic materials and recent developments to conquer those obstacles. Available biological techniques and processes, from the pretreatments of cellulosic materials to the valorization processes, were emphasized. Biological pretreatments, including hydrolysis using microbial consortia, fungi, enzymes, engineered bacterial/fungal strains, and co-culture systems, could enhance the release of reducing sugar. Resources recovery, including biogases, ethanol, butanol, PHA, etc., from lignocellulosic materials were also discussed, while the influences of composition of lignocellulosic materials and pretreatment options, applications of co-culture system, and integrated treatments with other wastes, were described. In the review, co-culture system and metabolic engineering are emphasized as the promising biological technologies, while perspectives are provided for their future developments.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Biotecnología , Hidrólisis
4.
Adv Exp Med Biol ; 1354: 299-314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34807448

RESUMEN

Dairy and beef cattle make a vital contribution to global nutrition, and since their domestication, they have been continuously exposed to natural and artificial selection to improve production characteristics. The technologies of transgenesis and gene editing used in cattle are responsible for generating news characteristics in bovine breeding, such as alteration of nutritional components of milk and meat enhancing human health benefits, disease resistance decreasing production costs and offering safe products for human food, as well as the recombinant protein production of biomedical significance. Different methodologies have been used to generate transgenic cattle as bioreactors. These methods include the microinjection of vectors in pronuclear, oocyte or zygote, sperm-mediate transgenesis, and somatic cell nuclear transfer. Gene editing has been applied to eliminate unwanted genes related to human and animal health, such as allergy, infection, or disease, and to insert transgenes into specific sites in the host genome. Methodologies for the generation of genetically modified cattle are laborious and not very efficient. However, in the last 30 years, transgenic animals were produced using many biotechnological tools. The result of these modifications includes (1) the change of nutritional components, including proteins, amino acids and lipids for human nutrition; (2) the removal allergic proteins milk; (3) the production of cows resistant to disease; or (4) the production of essential proteins used in biomedicine (biomedical proteins) in milk and blood plasma. The genetic modification of cattle is a powerful tool for biotechnology. It allows for the generation of new or modified products and functionality that are not currently available in this species.


Asunto(s)
Leche , Técnicas de Transferencia Nuclear , Animales , Animales Modificados Genéticamente , Reactores Biológicos , Biotecnología , Bovinos , Femenino
5.
Chemosphere ; 286(Pt 1): 131623, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34346348

RESUMEN

The increasing demand for the development of sustainable strategies to utilize and process agro-industrial residues paves new paths for exploring innovative approaches in this area. Biotechnology based microbial transformations provide efficient, low cost and sustainable approaches for the production of value added products. The use of organic rich residues opens new avenues for the production of enzymes, pigments, biofuels, bioactive compounds, biopolymers etc. with vast industrial and therapeutic applications. Innovative technologies like strain improvement, enzyme immobilization, genome editing, morphological engineering, ultrasound/supercritical fluid/pulse electric field extraction, etc. can be employed. These will be helpful in achieving significant improvement in qualitative and quantitative parameters of the finished products. The global trend for the valorisation of biowaste has boosted the commercialization of these products which has transformed the markets by providing new investment opportunities. The upstream processing of raw materials using microbes poses a limitation in terms of product development and recovery which can be overcome by modifying the bioreactor design, physiological parameters or employing alternate technologies which will be discussed in this review. The other problems related to the processes include product stability, industrial applicability and cost competitiveness which needs to be addressed. This review comprehensively discusses the recent progress, avenues and challenges in the approaches aimed at valorisation of agro-industrial wastes along with possible opportunities in the bioeconomy.


Asunto(s)
Biocombustibles , Residuos Industriales , Reactores Biológicos , Biotecnología , Industrias
6.
Bioresour Technol ; 344(Pt B): 126165, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34695585

RESUMEN

Lignocellulosic biomass has great potential as an inedible feedstock for bioplastic synthesis, although its use is still limited compared to current edible feedstocks of glucose and starch. This review focuses on recent advances in the production of biopolymers and biomonomers from lignocellulosic feedstocks with downstream processing and chemical polymer syntheses. In microbial production, four routes composed of existing poly (lactic acid) and polyhydroxyalkanoates (PHAs) and the emerging biomonomers of itaconic acid and aromatic compounds were presented to review present challenges and future perspectives, focusing on the use of lignocellulosic feedstocks. Recently, advances in purification technologies decreased the number of processes and their environmental burden. Additionally, the unique structures and high-performance of emerging lignocellulose-based bioplastics have expanded the possibilities for the use of bioplastics. The sequence of processes provides insight into the emerging technologies that are needed for the practical use of bioplastics made from lignocellulosic biomass.


Asunto(s)
Lignina , Polihidroxialcanoatos , Biomasa , Biotecnología , Almidón
7.
Bioresour Technol ; 344(Pt B): 126252, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34728361

RESUMEN

Cocoa beans are produced through on-farm processing where residual biomass is discarded, including cocoa pod husks (CPH), cocoa bean shells and cocoa sweatings. CPH represents about 80% of these residues that are generated during the initial cocoa bean processing steps and their disposal occupies large areas, causing social and environmental concerns. In the last decades, the lignocellulosic composition of CPH has attracted the attention of the scientific and productive sector. Recently, some studies have reported the use of CPH in the production of medium to high value-added molecules, with potential applications in food and feed, agriculture, bioenergy, and other segments. This review presents biotechnological approaches and processes for the exploitation of CPH, including pre-treatment methods for the production of different biomolecules. Great perspectives and innovations were found concerning CPH exploitation and valorisation, but still more efforts are needed to valorise this potential feedstock and give support to producers in-development countries.


Asunto(s)
Cacao , Biomasa , Biotecnología , Alimentos
8.
Bioresour Technol ; 344(Pt B): 126292, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34748984

RESUMEN

Cellulosic ethanol production has received global attention to use as transportation fuels with gasoline blending virtue of carbon benefits and decarbonization. However, due to changing feedstock composition, natural resistance, and a lack of cost-effective pretreatment and downstream processing, contemporary cellulosic ethanol biorefineries are facing major sustainability issues. As a result, we've outlined the global status of present cellulosic ethanol facilities, as well as main roadblocks and technical challenges for sustainable and commercial cellulosic ethanol production. Additionally, the article highlights the technical and non-technical barriers, various R&D advancements in biomass pretreatment, enzymatic hydrolysis, fermentation strategies that have been deliberated for low-cost sustainable fuel ethanol. Moreover, selection of a low-cost efficient pretreatment method, process simulation, unit integration, state-of-the-art in one pot saccharification and fermentation, system microbiology/ genetic engineering for robust strain development, and comprehensive techno-economic analysis are all major bottlenecks that must be considered for long-term ethanol production in the transportation sector.


Asunto(s)
Biocombustibles , Etanol , Biomasa , Biotecnología , Fermentación , Hidrólisis , Lignina/metabolismo
9.
Bioresour Technol ; 344(Pt B): 126304, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34752879

RESUMEN

Microalgae contribute significantly to the global carbon cycle through photosynthesis. Given their ability to efficiently convert solar energy and atmospheric carbon dioxide into chemical compounds, such as carbohydrates, and generate oxygen during the process, microalgae represent an excellent and feasible carbohydrate bioresource. Microalgae-based biofuels are technically viable and, delineate a green and innovative field of opportunity for bioenergy exploitation. Microalgal polysaccharides are one of the most versatile groups for biotechnological applications and its content can be increased by manipulating cultivation conditions. Microalgal carbohydrates can be used to produce a variety of biofuels, including bioethanol, biobutanol, biomethane, and biohydrogen. This review provides an overview of microalgal carbohydrates, focusing on their use as feedstock for biofuel production, highlighting the carbohydrate metabolism and approaches for their enhancement. Moreover, biofuels produced from microalgal carbohydrate are showed, in addition to a new bibliometric study of current literature on microalgal carbohydrates and their use.


Asunto(s)
Microalgas , Biocombustibles , Biomasa , Biotecnología , Carbohidratos
10.
Bioresour Technol ; 344(Pt A): 126193, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34710613

RESUMEN

In this review article, discuss the many ways utilized by the dairy sector to treat pollutants, emphasizing their influence on the quality and efficiency with which contamination is removed. It focuses on biotechnology possibilities for valorizing dairy waste in particular. The findings revealed that dairy waste may be treated using physicochemical, biological, and biotechnological techniques. Notably, this article highlighted the possibility of dairy waste being used as a feedstock not only for the generation of biogas, bioethanol, biohydrogen, microbial fuel cells, lactic acid, and fumaric acid via microbial technology but also for the production of biooil and biochar by pyrolysis. In addition, this article critically evaluates the many treatment techniques available for recovering energy and materials from dairy waste, their combinations, and implementation prospects. Valorization of dairy waste streams presents an opportunity to extend the dairy industry's presence in the fermented functional beverage sector.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biocombustibles , Biotecnología
11.
Plant Biol (Stuttg) ; 24(1): 3-8, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34569131

RESUMEN

A plant's associated biota plays an integral role in its metabolism, nutrient uptake, stress tolerance, pathogen resistance and other physiological processes. Although a virome is an integral part of the phytobiome, a major contradiction exists between the holobiont approach and the practical need to eradicate pathogens from agricultural crops. In this review, we discuss grapevine virus control, but the issue is also relevant for numerous other crops, including potato, cassava, citrus, cacao and other species. Grapevine diseases, especially viral infections, cause main crop losses. Methods have been developed to eliminate viruses and other microorganisms from plant material, but elimination of viruses from plant material does not guarantee protection from future reinfection. Elimination of viral particles in plant material could create genetic drift, leading in turn to an increase in the occurrence of pathogenic strains of viruses. A possible solution may be a combination of virus elimination and plant propagation in tissue culture with in vitro vaccination. In this context, possible strategies to control viral infections include application of plant resistance inducers, cross protection and vaccination using siRNA, dsRNA and viral replicons during plant 'cleaning' and in vitro propagation. The experience and knowledge accumulated in human immunization can help plant scientists to develop and employ new methods of protection, leading to more sustainable and healthier crop production.


Asunto(s)
Virus de Plantas , Biotecnología , Productos Agrícolas , Enfermedades de las Plantas , Vacunación
12.
Sci Total Environ ; 806(Pt 2): 150585, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34597562

RESUMEN

A growing world population is causing hazardous compounds to form at an increasingly rapid rate, calling for ecological action. Wastewater management and treatment is an expensive process that requires appropriate integration technology to make it more feasible and cost-effective. Algae are of great interest as potential feedstocks for various applications, including environmental sustainability, biofuel production, and the manufacture of high-value bioproducts. Bioremediation with microalgae is a potential approach to reduce wastewater pollution. The need for effective nutrient recovery, greenhouse gas reduction, wastewater treatment, and biomass reuse has led to a wide interest in the use of microalgae for wastewater treatment. Furthermore, algae biomass can be used to produce bioenergy and high-value bioproducts. The use of microalgae as medicine (production of bioactive and medicinal compounds), biofuels, biofertilizers, and food additives has been explored by researchers around the world. Technological and economic barriers currently prevent the commercial use of algae, and optimal downstream processes are needed to reduce production costs. Therefore, the simultaneous use of microalgae for wastewater treatment and biofuel production could be an economical approach to address these issues. This article provides an overview of algae and their application in bioremediation, bioenergy production, and bioactive compound production. It also highlights the current problems and opportunities in the algae-based sector, which has recently become quite promising.


Asunto(s)
Microalgas , Purificación del Agua , Biocombustibles , Biomasa , Biotecnología , Aguas Residuales
13.
Polim Med ; 51(2): 57-67, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34910388

RESUMEN

BACKGROUND: Gamma-polyglutamic acid (γ-PGA) is a microbially produced non-toxic peptide biopolymer which is gaining grounds in many biotechnological fields and has a wide range of applications. OBJECTIVES: In this study, the characteristics of γ-PGA produced by Bacillus megaterium isolated from an oil seed were determined, while the nutritional requirements of the bacterium were optimized using a predictive 15 factor-16 run Plackett-Burman experimental design. MATERIAL AND METHODS: The main effect of each factor, the interaction and quadratic effects of the factors on optimized production were determined from Box-Benkhen model using Dell Statistica v. 12 and 13 software. Bacillus megaterium UP47 produced the highest γ-PGA (16.33 g/L) out of 56 spore-forming Bacillus strains isolated from soil, water and fermented food samples. RESULTS: Hydrolysates of the produced γ-PGA had a retention factor which corresponded to the L-glutamic acid standard (retention factor (rf) 0.35), while high-definition fourier transform infrared (FT-IR) spectroscopic imaging showed characteristic peaks representative of the active bonds present in γ-PGA. The γ-PGA at a concentration as low as 50 mg/100 mL exerted antimicrobial inhibitions against test pathogens. A 2.00 w/v γ-PGA solution had 11 mm and 13 mm inhibition zones against Staphylococcus aureus and Shigella dysenteriae, respectively. A second order polynomial equation for prediction of γ-PGA was derived as: γPGA yield = 3316.061 - 449.708A + 9.036A2 - 139.813B + 3.095B2 - 7.699C - 0.164C2 + 13.116AB - 0.087AB2 - 0.248A2B + 3.781AC - 0.076A2C - 0.394BC. It showed an increase in γ-PGA yield with increasing L-glutamic acid and biotin, but a decrease with yeast extract. CONCLUSIONS: Bacillus megaterium UP47 had a maximum γ-PGA yield of 54 g/L and 62 g/L, respectively, from the Plackett-Burman and Box-Benkhen design, thereby resulting in an appreciable increase in polymer yield after the optimization process with a 95% confidence level.


Asunto(s)
Bacillus megaterium , Ácido Poliglutámico , Biotecnología , Ácido Poliglutámico/análogos & derivados , Espectroscopía Infrarroja por Transformada de Fourier
14.
Drug Discov Today Technol ; 40: 3-11, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34916019

RESUMEN

This review provides an overview of the various theoretical and practical aspects of biotech plant design. It covers engineering, quality, regulatory, safety, environmental and economical points to be considered. Current knowledge and future trends as well as their impact on the planning and design are also discussed.


Asunto(s)
Biotecnología , Animales
15.
J Biotechnol ; 342: 128-138, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34743006

RESUMEN

The present study demonstrates biotechnological applications of the lichen Pleurosticta acetabulum, specifically the production of large amounts of hydrogen even after the lichen exposure to extreme conditions such as a) extreme UVB radiation (1.7 mW/cm2 = 1000 J m-2 min-1) over different time periods (4, 20 & 70 h) and b) combined exposure of the lichen to high intensity UVB radiation and extreme low (-196 °C) or extreme high temperatures (+70 °C). The results highlight that the extremophilic and polyextremophilic behavior of lichens both in dehydrated and in regenerated form, under extreme conditions not necessarily recorded on earth, is compatible with their biotechnological uses. The lichen viability was measured using fluorescence induction techniques (OJIP-test), which record changes in the molecular structure and function of the photosynthetic mechanism, while its ability to produce molecular hydrogen was measured through thermal conductivity gas chromatography (GC-TCD) analysis. Hydrogen is a promising fuel for the future. The exciting result of a lichen micro-ecosystem is its ability to expel its moisture and remain in an inactive state, protecting itself from extreme conditions and maintaining its ability to high yield hydrogen production in a closed system, with the sole addition of water and without the need for additional energy. Our results expand the potential use of lichens for future biotechnological applications in extreme Earth environments, but also in environments on other planets, such as Mars, thus paving the way for astrobiotechnological applications.


Asunto(s)
Líquenes , Biotecnología , Ecosistema , Hidrógeno , Parmeliaceae , Temperatura
16.
Artículo en Inglés | MEDLINE | ID: mdl-34770089

RESUMEN

The development of the biotech industry is in full swing, and consumers have begun to value biotech brands. Since biotech products often focus on the future or special benefits, consumers inevitably bear certain risks when purchasing biotech products, and their trust in the biotech brand will have an important impact on their purchase intention. Previous studies have lacked a targeted understanding of consumer trust in biotech brands and a discussion of cultural viewpoints. This study introduced the concept of personal connections in Chinese relationalism and trust strategies in Chinese society to address this gap. In-depth interviews and focus group discussions were conducted in collaboration with Company X, a listed Taiwanese cord blood company, to extract the key factors influencing consumer trust and purchase intention of biotech brands. After constructing the structure model, the study was validated using a structural equation model through investigation and survey. The findings indicated that consumer trust in biotech brands was constructed by a combination of kinship trust transfer and emergent trust transfer within the consumer relationship network, as well as institutional trust and professional trust outside the relationship network and that a significant positive correlation existed between consumer trust in biotech brands and purchase intention. The acquaintances within the consumer relationship network include not only relatives and friends but also health care workers and netizens that consumers come into contact with. In addition, kinship trust transfer and emergent trust transfer within the consumer relationship network have a greater impact on trust in biotech brands than the institutional trust and professional trust outside the relationship network. The findings of this study deepen the understanding of consumer trust in biotech brands across cultures, and suggest that future marketing communication should be expanded to include key players within the consumer relationship network.


Asunto(s)
Intención , Confianza , Biotecnología , Comportamiento del Consumidor , Sangre Fetal , Humanos
17.
Planta ; 254(5): 91, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34617240

RESUMEN

MAIN CONCLUSION: This work reviews recent advances in the pathways and key enzymes of steroidal saponins biosynthesis and sets the foundation for the biotechnological production of these useful compounds through transformation of microorganisms. Steroidal saponins, due to their specific chemical structures and active effects, have long been important natural products and that are irreplaceable in hormone production and other pharmaceutical industries. This article comprehensively reviewed the previous and current research progress and summarized the biosynthesis pathways and key biosynthetic enzymes of steroidal saponins that have been discovered in plants and microoganisms. On the basis of the general biosynthetic pathway in plants, it was found that the starting components, intermediates and catalysing enzymes were diverse between plants and microorganisms; however, the functions of their related enzymes tended to be similar. The biosynthesis pathways of steroidal saponins in microorganisms and marine organisms have not been revealed as clearly as those in plants and need further investigation. The elucidation of biosynthetic pathways and key enzymes is essential for understanding the synthetic mechanisms of these compounds and provides researchers with important information to further develop and implement the massive production of steroidal saponins by biotechnological approaches and methodologies.


Asunto(s)
Saponinas , Biotecnología
18.
Sheng Wu Gong Cheng Xue Bao ; 37(9): 3383-3396, 2021 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-34622645

RESUMEN

Accurately understanding the features and connotations of complex engineering problems is an important prerequisite for setting graduation requirements, constructing curriculum and designing teaching contents. By discussing the characteristics of complex engineering problems in the biological industry, this paper explored the demands for undergraduates in Yangtze river delta region, summarized the typical jobs and their requirements, and expounded the connotation of complex engineering problems contained in various typical tasks. On this basis, a gradual curriculum system was constructed, which included multiple stages of conceiving, formation and application, to cultivate the ability to solve complex engineering problems in the major of bioengineering. The curriculum coordinated the implementation of deep integration of industry and education, research feed back course construction, course team and advanced courses building up, professional associations covered all crews and students, supporting the ability training of solving complex engineering problems.


Asunto(s)
Curriculum , Ingeniería , Biotecnología , Humanos , Industrias , Solución de Problemas
19.
Nanoscale ; 13(40): 16834-16846, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34622910

RESUMEN

DNA-based nanotechnology has evolved into an autonomous, highly innovative, and dynamic field of research at the nexus of supramolecular chemistry, nanotechnology, materials science, and biotechnology. DNA-based materials, including origami nanodevices, have started to emerge as an ideal scaffold for use in cellular programming, tissue engineering, and drug delivery applications. We cover herein the applications for DNA as a scaffold for interfacing with, and guiding, the activity of biological systems like cells and tissues. Although DNA is a highly programmable molecular building block, it suffers from a lack of functional capacity for guiding and modulating cells. Coupling DNA to biologically active molecules can bestow bioactivity to these nanodevices. The main goal of such nanodevices is to synthesize systems that can bind to cells and mimic the extracellular environment, and serve as a highly promising toolbox for multiple applications in cellular programming and tissue engineering. DNA-based programmable devices offer a highly promising approach for programming collections of cells, tissue engineering, and regenerative medicine applications.


Asunto(s)
ADN , Ingeniería de Tejidos , Biotecnología , Nanotecnología , Medicina Regenerativa
20.
Biosens Bioelectron ; 194: 113666, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34600338

RESUMEN

Intelligent microfluidics is an emerging cross-discipline research area formed by combining microfluidics with machine learning. It uses the advantages of microfluidics, such as high throughput and controllability, and the powerful data processing capabilities of machine learning, resulting in improved systems in biotechnology and chemistry. Compared to traditional microfluidics using manual analysis methods, intelligent microfluidics needs less human intervention, and results in a more user-friendly experience with faster processing. There is a paucity of literature reviewing this burgeoning and highly promising cross-discipline. Therefore, we herein comprehensively and systematically summarize several aspects of microfluidic applications enabled by machine learning. We list the types of microfluidics used in intelligent microfluidic applications over the last five years, as well as the machine learning algorithms and the hardware used for training. We also present the most recent advances in key technologies, developments, challenges, and the emerging opportunities created by intelligent microfluidics.


Asunto(s)
Técnicas Biosensibles , Microfluídica , Biotecnología , Humanos , Inteligencia , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...