Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.622
Filtrar
1.
Biomolecules ; 11(3)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802173

RESUMEN

Obesity is the epidemic of the 21st century. In developing countries, the prevalence of obesity continues to rise, and obesity is occurring at younger ages. Obesity and associated metabolic stress disrupt the whole-body physiology. Adipocytes are critical components of the systemic metabolic control, functioning as an endocrine organ. The enlarged adipocytes during obesity recruit macrophages promoting chronic inflammation and insulin resistance. Together with the genetic susceptibility (single nucleotide polymorphisms, SNP) and metabolic alterations at the molecular level, it has been highlighted that key modifiable risk factors, such as those related to lifestyle, contribute to the development of obesity. In this scenario, urgent therapeutic options are needed, including not only pharmacotherapy but also nutrients, bioactive compounds, and natural extracts to reverse the metabolic alterations associated with obesity. Herein, we first summarize the main targetable processes to tackle obesity, including activation of thermogenesis in brown adipose tissue (BAT) and in white adipose tissue (WAT-browning), and the promotion of energy expenditure and/or fatty acid oxidation (FAO) in muscles. Then, we perform a screening of 20 natural extracts (EFSA approved) to determine their potential in the activation of FAO and/or thermogenesis, as well as the increase in respiratory capacity. By means of innovative technologies, such as the study of their effects on cell bioenergetics (Seahorse bioanalyzer), we end up with the selection of four extracts with potential application to ameliorate the deleterious effects of obesity and the chronic associated inflammation.

3.
Artículo en Inglés | MEDLINE | ID: mdl-33797722

RESUMEN

To mitigate the negative environmental and public health concerns associated with increased industrial discharges amid the rapid industrial growth, sub-Saharan African countries have instituted several environmental regulations and policies. However, a paradox of good environmental policies but inadequate enforcement exists in most of these countries, with information on the pollution level unknown due to poor monitoring resources. In this study, potentially toxic heavy metal contamination and physicochemical characteristics in effluents and dumpsite soils of two tanneries in Kenya (DB) and South Africa (BO) were evaluated during the dry and rainy season of 2018. Pollution levels and ecological risk in the dumpsite soils were assessed by adopting geoaccumulation index (Igeo), contamination factor (CF), pollution load index (PLI), and ecological risk index (PRI). The results showed that the mean final effluent concentration for total dissolved solids (TDS), chemical oxygen demand (COD), and Cr, Cu, Fe, Ni, Zn, and Cd for BO (2127, 890, 1.82, 1.38, 1.96, 0.60, 1.21, and 1.16, respectively) and DB tanneries (8157, 1369, 7.90, 0.69, 1.05, 0.60, 1.72 mg/L, respectively) were above the limits of emission guidelines. The mean Cr and Cr(VI) concentrations in tannery dumpsite soils (204.9 ± 29.1 and 0.31 ± 0.01 and 943 ± 29.8 and 0.4 ± 0.07 mg/kg for BO and DB, respectively) and Fe (2498 ± 62 mg/kg in DB) exceeded acceptable thresholds of the World Health Organization (WHO), Food and Agriculture Organization (FAO), and local background levels. A positive strong correlation was observed between Cr and organic matter, OM (r > 0.7, p < 0.001), electrical conductivity, EC (r = 0.99, p < 0.05), and As (r = 0.62; p < 0.05), suggesting a common anthropogenic point source. The mean PLI values of 5.3 and 1.6 for DB and BO dumpsites indicated significant pollution of the soils with heavy metals, specifically Cr (Igeo = 18 and 2.4 for DB and BO, respectively). Similarly, PRI values of 174.8 and 57.4 indicated a moderate and low potential ecological risk for DB and BO tannery dumpsite, respectively, with several plants sampled within the two sites exhibiting elevated levels of Cr contamination. In summary, these results provide scientific insights on the need for both improved effluent management and treatment technologies of tannery wastes, coupled with the strengthening of continuous monitoring and enforcement for compliance of industrial discharges in sub-Saharan countries.

4.
Sci Rep ; 11(1): 7802, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833285

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable human cardiac cells to be studied in vitro, although they use glucose as their primary metabolic substrate and do not recapitulate the properties of adult cardiomyocytes. Here, we have explored the interplay between maturation by stimulation of fatty acid oxidation and by culture in 3D. We have investigated substrate metabolism in hiPSC-CMs grown as a monolayer and in 3D, in porous collagen-derived scaffolds and in engineered heart tissue (EHT), by measuring rates of glycolysis and glucose and fatty acid oxidation (FAO), and changes in gene expression and mitochondrial oxygen consumption. FAO was stimulated by activation of peroxisome proliferator-activated receptor alpha (PPARα), using oleate and the agonist WY-14643, which induced an increase in FAO in monolayer hiPSC-CMs. hiPSC-CMs grown in 3D on collagen-derived scaffolds showed reduced glycolysis and increased FAO compared with monolayer cells. Activation of PPARα further increased FAO in cells on collagen/elastin scaffolds but not collagen or collagen/chondroitin-4-sulphate scaffolds. In EHT, FAO was significantly higher than in monolayer cells or those on static scaffolds and could be further increased by culture with oleate and WY-14643. In conclusion, a more mature metabolic phenotype can be induced by culture in 3D and FAO can be incremented by pharmacological stimulation.

5.
Artículo en Inglés | MEDLINE | ID: mdl-33819327

RESUMEN

This study evaluated the accuracy of implant placement with surgical-template guidance both in vitro and in vivo. Virtual surgical planning was performed based on the data from CBCT scans and an intraoral scanner. Surgical templates were designed according to the planned implants and manufactured with stereolithography. In vitro, 60 implants were placed in 15 resin models. In vivo, 74 implants were placed in 54 patients. The implants were scanned with CBCT postoperatively. Implant accuracy was evaluated by measuring the following parameters: central deviation at the apex and shoulder, horizontal deviation at the apex and shoulder, vertical deviation at the apex and shoulder, and angular deviation. There were statistically significant in vitro and in vivo deviations for all parameters, and the implant deviations in vivo were significantly greater than those in vitro. When using a mucosa-supported template, horizontal deviations at the apex were significantly greater than when a teeth-supported template was used. Within the limitation of the study design, inaccuracy existed in implant placement guided with a surgical template. More studies are needed to investigate the value of the procedure in future.


Asunto(s)
Implantes Dentales , Cirugía Asistida por Computador , Diseño Asistido por Computadora , Tomografía Computarizada de Haz Cónico , Implantación Dental Endoósea , Humanos , Imagenología Tridimensional , Planificación de Atención al Paciente
6.
Crit Rev Biotechnol ; : 1-24, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827346

RESUMEN

Plants are extensively well-thought-out as the main source for nourishing natural life on earth. In the natural environment, plants have to face several stresses, mainly heat stress (HS), chilling stress (CS) and freezing stress (FS) due to adverse climate fluctuations. These stresses are considered as a major threat for sustainable agriculture by hindering plant growth and development, causing damage, ultimately leading to yield losses worldwide and counteracting to achieve the goal of "zero hunger" proposed by the Food and Agricultural Organization (FAO) of the United Nations. Notably, this is primarily because of the numerous inequities happening at the cellular, molecular and/or physiological levels, especially during plant developmental stages under temperature stress. Plants counter to temperature stress via a complex phenomenon including variations at different developmental stages that comprise modifications in physiological and biochemical processes, gene expression and differences in the levels of metabolites and proteins. During the last decade, omics approaches have revolutionized how plant biologists explore stress-responsive mechanisms and pathways, driven by current scientific developments. However, investigations are still required to explore numerous features of temperature stress responses in plants to create a complete idea in the arena of stress signaling. Therefore, this review highlights the recent advances in the utilization of omics approaches to understand stress adaptation and tolerance mechanisms. Additionally, how to overcome persisting knowledge gaps. Shortly, the combination of integrated omics, genome editing, and speed breeding can revolutionize modern agricultural production to feed millions worldwide in order to accomplish the goal of "zero hunger."

7.
Anim Genet ; 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33829515

RESUMEN

Icelandic Cattle is the only dairy cattle breed native to Iceland. It currently numbers ca. 26 000 breeding females. We used 50k genotypes of over 8000 Icelandic Cattle to estimate genomic and pedigree-based inbreeding and to detect selection signatures using the integrated haplotype score. We used 47 Icelandic bulls genotyped with a 770k SNP chip to estimate LD decay for comparison with other Nordic dairy cattle breeds. We detected ROHs on the autosomes and computed ROH-based autosomal inbreeding coefficients. Average inbreeding coefficients according to pedigree and ROHs were 0.0621 and 0.101. Effective population sizes for the years 2009-2017 according to pedigree, ROHs, genomic relationship matrix, excess of homozygosity and individual increase in inbreeding were 81, 65, 60, 58 and 92 respectively. We identified three regions and six candidate genes that showed a signature of selection according to the integrated haplotype score (P < 0.05) on chromosomes 1, 16 and 23. The LD structure of Icelandic Cattle is shaped by a long period of isolation and a small founder population. The estimate of LD at distances closer than 0.3 Mb is lower in Icelandic Cattle than in Danish Jersey, but is higher than in Danish Holstein and Red Nordic Dairy Cattle breeds. Our findings show that inbreeding rates in Icelandic Cattle currently are sustainable according to FAO guidelines, and our results do not indicate severe historical inbreeding.

8.
Foods ; 10(4)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810507

RESUMEN

As the production and maintenance of a sufficient number of microencapsulated probiotics is still a test for the food industry, the present study addressed the testing of three prebiotics: chicory inulin, soluble potato starch, oligofructose and a control carbon source, namely glucose, as a component part of the encapsulation matrix. Using the extrusion encapsulation technique, it was possible to obtain microcapsules whose matrix composition and dimensions correspond to the requirements of the food industry. The microcapsules obtained showed significantly different physicochemical properties, with different survival rates during processing, storage and in simulated gastrointestinal conditions. The encapsulation efficiency was very high in relation to the dimensions of the microcapsules and the technique used (between 87.00-88.19%). The microcapsules obtained offered a very good viability (between 8.30 ± 0.00-9.00 ± 0, 02 log10 cfu/g) during the 30 days of storage at 2-8 degrees and also in the simulated gastrointestinal conditions (between 7.98-8.22 log10 cfu/g). After 30 days, the lowest viability was registered in the microcapsules with glucose 6.78 ± 0.15 log10 cfu/g. It was found that after 4 h of action of gastrointestinal juices on the microcapsules stored for 30 days, cell viability falls within the limits recommended by the Food and Agriculture Organization of the United Nations (FAO) (106-107 CFU/mL or g of food. This study demonstrated that using prebiotic encapsulation matrix increases cell viability and protection and that the extrusion encapsulation method can be used in the production of probiotic microcapsules for the food industry.

9.
Sci Adv ; 7(14)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33811081

RESUMEN

The unprecedented growth of aquaculture involves well-documented environmental and public-health costs, but less is understood about global animal welfare risks. Integrating data from multiple sources, we estimated the taxonomic diversity of farmed aquatic animals, the number of individuals killed annually, and the species-specific welfare knowledge (absence of which indicates extreme risk). In 2018, FAO reported 82.12 million metric tons of farmed aquatic animals from six phyla and at least 408 species-20 times the number of species of farmed terrestrial animals. The farmed aquatic animal tonnage represents 250 to 408 billion individuals, of which 59 to 129 billion are vertebrates (e.g., carps, salmonids). Specialized welfare information was available for 84 species, only 30% of individuals; the remaining 70% either had no welfare publications or were of an unknown species. With aquaculture growth outpacing welfare knowledge, immediate efforts are needed to safeguard the welfare of high-production, understudied species and to create policies that minimize welfare risks.

10.
Crit Rev Food Sci Nutr ; : 1-21, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33792417

RESUMEN

Food wastes imply significant greenhouse gas emissions, that increase the challenge of climate change and impact food security. According to FAO (2019), one of the main food wastes come from fruit and vegetables, representing 0.5 billion tons per year, of the 1.3 billion tons of total waste. The wastes obtained from fruit and vegetables have plenty of valuable components, known as bioactive compounds, with many properties that impact positively in human health. Some bioactive compounds hold antioxidant, anti-inflammatory, and anti-cancer properties and they have the capacity of modulating metabolic processes. Currently, the use of fruit and vegetable waste is studied to obtain bioactive compounds, through non-conventional techniques, also known as green extraction techniques. These extraction techniques report higher yields, reduce the use of solvents, employ less extraction time, and improve the efficiency of the process for obtaining bioactive compounds. Once extracted, these compounds can be used in the cosmetic, pharmaceutical, or food industry, the last one being focused on improving food quality.

11.
Plant Dis ; 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33754851

RESUMEN

Peanut (Arachis hypogaea L.) is the third most important oilseed crop in the world. The cultivated area in Mexico is currently 52,046 ha with a production of 91,109 ton in 2018 (FAO, 2020). Puebla state ranks third in the national production with 9,313 ton (SIAP, 2020). In September 2019, typical symptoms of charcoal rot (Macrophomina phaseolina (Tassi) Goid.) were observed in about 50% of cultivar Virginia Champs peanuts, and it affecting 1.5 ha located in Chietla (18° 27' 39" N; 98° 37' 11" W), Puebla, Mexico. Diseased plants showed brown discoloration in stem and root rot, with chlorotic foliage, dark microsclerotia were observed on the stem and premature dying. To isolate the causal agent of these symptoms, 20 infected plants were recovered and processed in the laboratory. Ten pieces of stem and root tissue were selected from each plant, cut into small pieces 5-mm in length, superficially disinfested with 1% sodium hypochlorite for 3 min, followed by three rinses with sterile distilled water. Later, dried on sterile paper and placed on Petri plates containing potato dextrose agar (PDA) medium, which were kept at 28°C for 7 days (12 h light and 12 h dark). Four colonies were purified via hyphal tip culture, fungus was consistently isolated from the analyzed tissues; additional microcultures were prepared to observe phenotypic characteristics. Colonies showed dense growth, with a gray initial mycelium, becoming black after 7 days. Microesclerotia with spherical to oblong in shape were observed after 5 days on PDA, with a black coloration, measuring an average of 74 µm width × 110 µm length (n=40). Phylogenetic analysis was conducted by amplification and sequencing of the internal transcribed spacer (ITS) region with the ITS5 and ITS4 primers (White et al. 1990). The obtained sequences were deposited in GenBank database under accession numbers: MW585378, MW585379, MW585380, and MW585381 containing approximately 601 bp of the ITS1-5.8S-ITS2 region (complete sequence); they were 99% identical with the reference sequence of Macrophomina phaseolina (GenBank accession KF951698) isolated in Phaseolus vulgaris from Mexico. Based on the symptoms in the field, colony morphology, color, and shape of the microsclerotia, and molecular identification, the fungus was identified as M. phaseolina (Tassi) Goid. The pathogenicity test was performed on peanut plants cultivar Virginia Champs grown on plastic pots with an autoclaved peat/soil mixture under greenhouse conditions (70% relative humidity and 28°C). Fifty two-month-old peanut plants were inoculated using the toothpick method. The toothpicks were previously sterilized and then placed in Petri plates with each of the four colonies of M. phaseolina until colonization. Small wounds were made with those toothpicks in the roots, and a sterile toothpick was used in the control plants, the assays were performed twice. After three weeks, the inoculated plants exhibited symptoms of wilting chlorosis on the leaves and brown to dark brown discoloration of the vascular ring, while control plants remained healthy. M. phaseolina was re-isolated from symptomatic root tissues and identified by phylogenetic approach, fulfilling Koch's postulates. To date, this fungus affects at least 372 hosts globally causing yield losses. Although in Mexico this fungus has been documented in Glycine max, Ipomoea batatas, Phaseolus vulgaris, Physalis ixocarpa, Saccharum officinarum, Sesamum indicum, Solanum melongena, S. tuberosum, and Sorghum bicolor (Farr and Rossman 2021). However, there are no reports of M. phaseolina as a potential pathogen on peanut; therefore, according to our knowledge, this is the first report of this fungus affecting A. hypogaea in Mexico.

12.
Curationis ; 44(1): e1-e7, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33764129

RESUMEN

BACKGROUND: The real-world problems and ever-changing challenges currently confronting the future of nursing education and healthcare require a problem-based learning approach using simulation strategy. This is exacerbated by the increasing burden of diseases such as tuberculosis, human immunodeficiency virus and acquired immune deficiency syndrome (HIV and AIDS) and more recently the coronavirus disease 2019 (COVID-19) pandemic, as well as advancing technology and changing regulations and policies. Problem-based learning is a student-centred learning strategy, where students are presented with situations drawn from practice, which can be used to bridge the theory-practice gap. OBJECTIVES: To explore the perceptions and views of healthcare educators on how problem-based learning can be facilitated through simulation. METHOD: A qualitative, exploratory, descriptive and contextual research design was used. Thirteen educators from the Faculty of Health Sciences of the University of Johannesburg, with 5 years' teaching experience, were purposively selected from the Dean's office, the Nursing Department, emergency medical care and the departments of podiatry, somatology and radiography. The participants were selected based on their extensive knowledge of problem-based learning and the use of simulation. Data were collected through in-depth, individual, semi-structured interviews. Thematic analysis provided six themes and 13 related sub-themes. The article focuses on the perceptions and views of educators regarding problem-based learning through simulation. RESULTS: Problem-based learning through simulation allows students to work together in teams, which demonstrates a new modus operandi and renders a holistic approach to patient care. CONCLUSION: Problem-based learning through simulation should be utilised to encourage reflective knowledge exchange. Students from various departments can learn about new innovations, creativity and develop critical thinking when solving complex health-related problems.


Asunto(s)
Actitud del Personal de Salud , Actitud hacia los Computadores , Instrucción por Computador/métodos , Educación en Enfermería/métodos , Docentes de Enfermería/psicología , Aprendizaje Basado en Problemas/métodos , Adulto , Curriculum , Femenino , Humanos , Masculino , Persona de Mediana Edad , Investigación Cualitativa , Adulto Joven
13.
One Health ; 12: 100233, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33786360

RESUMEN

Cross-sector communication, collaboration and knowledge exchange are still significant challenges for practical adoption of the One Health paradigm. To address these needs the "One Health Surveillance Codex" (OHS Codex) was established to provide a framework for the One Health community to continuously share practical solutions (e.g. tools, technical resources, guidance documents and experiences) applicable for national and international stakeholders from different One Health Surveillance sectors. Currently, the OHS Codex provides a number of resources that support the adoption of the OH paradigm in areas linked to the harmonization and interpretation of surveillance data. The OHS Codex framework comprises four high-level "action" principles, which respectively support collaboration, knowledge exchange, data interoperability, and dissemination. These principles match well with priority areas identified in the "Tripartite Guide to Addressing Zoonotic Diseases in Countries" published by WHO, FAO and OIE. Within each of the four principles, the OHS Codex provides a collection of useful resources as well as pointers to success stories for the application of these resources. As the OHS Codex is designed as an open community framework, it will continuously evolve and adapt to the needs of the OH community in the future.

14.
Artículo en Inglés | MEDLINE | ID: mdl-33786759

RESUMEN

In aquacultures, heavy metals could be accumulated in fish tissues from natural and human-related sources depending on different factors. This study aims to estimate the level of bioaccumulation of heavy metals in cultured Gilt-head sea bream Sparusaurata. In this regard, heavy metals concentrations were measured in both water and fish musculature that were collected from a private fish farm in Kafr ElSheikh, Egypt. Regarding the water samples, heavy metals were within the permissible limits with exception of Cd, Cu, and Zn. In fish musculature, all heavy metals were within the WHO/FAO permissible limits. The bioaccumulation factor (BAF) indicated that mostly all heavy metals accumulation in the Gilt-head sea bream musculature decreased with time which may be correlated with the increase in water pH, calcium, and other cations concentrations. The hazard index (HI) calculations indicate no adverse health effects of heavy metals on humans through daily fish consumption so far. However, health risks are not negligible making the regular monitoring of metal contaminants in the studied area a necessity.

15.
Artículo en Inglés | MEDLINE | ID: mdl-33788087

RESUMEN

Turkey borders three seas and the most populous locations are squeezed into the coastal territories. Thus, organisms living in these aquatic territories are under longstanding anthropogenic pressure. Hence, this study investigated the consumption outcomes leading to potential child and adult health risks along with the spatial distribution of As, Cd, Cr, Cu, Ni, Pb, V, and Zn in the Mediterranean mussels (Mytilus galloprovincialis) sampled at 23 different stations from the Black Sea, the Sea of Marmara, and the Aegean Sea coastal waters of Turkey. The mean concentrations of trace elements found in the Mediterranean mussels followed Zn (39.75 mg kg-1) > Cu (1.95 mg kg-1) > As (1.84 mg kg-1) > Pb (0.99 mg kg-1) > Ni (0.65 mg kg-1) > Cr (0.62 mg kg-1) > V (0.47 mg kg-1) > Cd (0.08 mg kg-1). Factor analysis revealed that trace elements were mostly derived from anthropogenic sources. Pb values were found to be above the permissible European Union limits at 10 sampling stations. While the estimated weekly intake did not exceed the Joint FAO/WHO Expert Committee on Food Additives limits, the target hazard quotient for As was found >1 for children. The lifetime cancer risk (CR) for adults and children was unacceptable (>10-4) at high consumption rates for As according to US Environmental Protection Agency. Monte Carlo simulation confirmed a CR to adult (62.98%) and children (97.24%) mussel consumers caused by As.

16.
Medicine (Baltimore) ; 100(9): e24829, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33655944

RESUMEN

ABSTRACT: An increasing number of studies focus on the effectiveness of Massive Open Online Courses (MOOC)-based blended learning, whereas none have yet studied using it for teaching fundamental nursing skills at an undergraduate level.To evaluate the effectiveness of MOOC-based blended learning versus face-to-face classroom teaching techniques within the fundamental nursing course at the Faculty of Nursing, University of Xiang Nan, China.This cluster randomized controlled trial enrolled 181 students and assigned them into either an MOOC-based blended or a face-to-face classroom teaching group, both involving the Fundamental Nursing course for undergraduate nursing students. The analyzed outcomes included test scores, critical thinking ability, and feedback received from the students on the Fundamental Nursing course.MOOC-based blended techniques versus face-to-face classroom teaching methods demonstrated higher daily performance (P = .014), operational performance (P = .001), theoretical achievements (P < .001), and final grades (P < .001) in Fundamental Nursing.Moreover, the mean change in the participants' critical thinking ability items between groups were, mostly, statistically significant. The items focusing on the feedback from the students demonstrated significant differences between the groups in terms of their satisfaction with the teaching they received (P < .001) and the overall learning effects (P = .030).This study confirmed that receiving MOOC-based blended learning was superior when compared against face-to-face classroom teaching techniques for learning within the Fundamental Nursing course.


Asunto(s)
Curriculum , Educación a Distancia/métodos , Bachillerato en Enfermería/métodos , Evaluación Educacional/métodos , Internet , Aprendizaje Basado en Problemas/métodos , Enseñanza/organización & administración , China , Instrucción por Computador/métodos , Femenino , Humanos , Masculino , Adulto Joven
17.
Bioresour Technol ; 330: 125012, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33773265

RESUMEN

Sugarcane is an important cash crop used for producing sweeteners and also some bioproducts (alcohol and bioenergy). The current study assesses life cycle energy, carbon and water footprint of sugarcane based sugar, ethanol and electricity in India. A farm to factory gate attributional life cycle assessment (LCA) is conducted to assess the energy and carbon footprints whereas the Food and Agriculture Organization's (FAO) CropWat model is used to estimate the water footprint (green, blue and grey). For the base case, electricity has the highest energy return on investment (EROI), lowest carbon and water footprints among the bioproducts. The choice of allocation method (economic, mass, and energy) impacts the energy and environmental outcomes of the bioproducts. The comparison among four different sugarcane seasons shows that bioproducts available from Adsali sugarcane have the highest EROI, lowest carbon and water footprints. The findings could lead to improved sustainability of sugarcane bioproducts in India.


Asunto(s)
Huella de Carbono , Saccharum , Animales , Carbono , Electricidad , Etanol , India , Estadios del Ciclo de Vida , Azúcares , Agua
18.
PLoS Negl Trop Dis ; 15(3): e0009236, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33661893

RESUMEN

Dog rabies has been recognized from ancient times and remains widespread across the developing world with an estimated 59,000 people dying annually from the disease. In 2011 a tri-partite alliance consisting of the OIE, the WHO and the FAO committed to globally eliminating dog-mediated human rabies by 2030. Regardless of global support, the responsibility remains with local program managers to implement successful elimination programs. It is well known that vaccination programs have a high probability of successful elimination if they achieve a population-coverage of 70%. It is often quoted that reducing population turnover (typically through sterilizations) raises the probability for local elimination by maintaining herd immunity for longer. Besides this, other factors that affect rabies elimination are rarely mentioned. This paper investigates the probability for local elimination as it relates to immunity, fecundity, dog population size, infectivity (bite rates), in-migration of immune-naïve dogs, and the initial incidence. To achieve this, an individual-based, stochastic, transmission model was manipulated to create a dataset covering combinations of factors that may affect elimination. The results thereof were analysed using a logistic regression model with elimination as the dependent variable. Our results suggest that smaller dog populations, lower infectivity and lower incidence (such as when epidemics start with single introductions) strongly increased the probability for elimination at wide ranges of vaccination levels. Lower fecundity and lower in-migration had weak effects. We discuss the importance of these findings in terms of their impact and their practical application in the design of dog-mediated rabies control programs.

19.
Glob Chang Biol ; 27(9): 1721-1736, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33657680

RESUMEN

The global demand for beef is rapidly increasing (FAO, 2019), raising concern about climate change impacts (Clark et al., 2020; Leip et al., 2015; Springmann et al., 2018). Beef and dairy contribute over 70% of livestock greenhouse gas emissions (GHG), which collectively contribute ~6.3 Gt CO2 -eq/year (Gerber et al., 2013; Herrero et al., 2016) and account for 14%-18% of human GHG emissions (Friedlingstein et al., 2019; Gerber et al., 2013). The utility of beef GHG mitigation strategies, such as land-based carbon (C) sequestration and increased production efficiency, are actively debated (Garnett et al., 2017). We compiled 292 local comparisons of "improved" versus "conventional" beef production systems across global regions, assessing net GHG emission data from Life Cycle Assessment (LCA) studies. Our results indicate that net beef GHG emissions could be reduced substantially via changes in management. Overall, a 46 % reduction in net GHG emissions per unit of beef was achieved at sites using carbon (C) sequestration management strategies on grazed lands, and an 8% reduction in net GHGs was achieved at sites using growth efficiency strategies. However, net-zero emissions were only achieved in 2% of studies. Among regions, studies from Brazil had the greatest improvement, with management strategies for C sequestration and efficiency reducing beef GHG emissions by 57%. In the United States, C sequestration strategies reduced beef GHG emissions by over 100% (net-zero emissions) in a few grazing systems, whereas efficiency strategies were not successful at reducing GHGs, possibly because of high baseline efficiency in the region. This meta-analysis offers insight into pathways to substantially reduce beef production's global GHG emissions. Nonetheless, even if these improved land-based and efficiency management strategies could be fully applied globally, the trajectory of growth in beef demand will likely more than offset GHG emissions reductions and lead to further warming unless there is also reduced beef consumption.

20.
Molecules ; 26(5)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668914

RESUMEN

Probing protein surfaces to accurately predict the binding site and conformation of a small molecule is a challenge currently addressed through mainly two different approaches: blind docking and cavity detection-guided docking. Although cavity detection-guided blind docking has yielded high success rates, it is less practical when a large number of molecules must be screened against many detected binding sites. On the other hand, blind docking allows for simultaneous search of the whole protein surface, which however entails the loss of accuracy and speed. To bridge this gap, in this study, we developed and tested BLinDPyPr, an automated pipeline which uses FTMap and DOCK6 to perform a hybrid blind docking strategy. Through our algorithm, FTMap docked probe clusters are converted into DOCK6 spheres for determining binding regions. Because these spheres are solely derived from FTMap probes, their locations are contained in and specific to multiple potential binding pockets, which become the regions that are simultaneously probed and chosen by the search algorithm based on the properties of each candidate ligand. This method yields pose prediction results (45.2-54.3% success rates) comparable to those of site-specific docking with the classic DOCK6 workflow (49.7-54.3%) and is half as time-consuming as the conventional blind docking method with DOCK6.


Asunto(s)
Algoritmos , Automatización , Diseño Asistido por Computadora , Factores de Intercambio de Guanina Nucleótido/química , Simulación del Acoplamiento Molecular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...