Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.927
Filtrar
1.
Int. microbiol ; 27(2): 607-614, Abr. 2024. ilus
Artículo en Inglés | IBECS | ID: ibc-ADZ-171

RESUMEN

Wetlands are the main natural sources of methane emissions, which make up a significant portion of greenhouse gas emissions. Such wetland patches serve as rich habitats for aerobic methanotrophs. Limited knowledge of methanotrophs from tropical wetlands widens the scope of study from these habitats. In the present study, a freshwater wetland in a tropical region in India was sampled and serially diluted to obtain methanotrophs in culture. This was followed by the isolation of methanotrophs on agarose-containing plates, incubated under methane: air atmosphere. Methanotrophs are difficult to cultivate, and very few cultures of methanotrophs are available from tropical wetlands. Our current study reports the cultivation of a diverse community of methanotrophs from six genera, namely, Methylomonas, Methylococcus, Methylomagnum, Methylocucumis (type I methanotrophs) along with Methylocystis, Methylosinus (type II methanotrophs). A high abundance of methanotrophs (106–1010 methanotrophs/g fresh weight) was observed in the samples. A Methylococcus strain could represent a putative novel species that was also isolated. Cultures of Methylomagnum and Methylocucumis, two newly described type I methanotrophs exclusively found in rice fields, were obtained. A large number of Methylomonas koyamae strains were cultured. Our study is pioneering in the documentation of culturable methanotrophs from a typical tropical wetland patch. The isolated methanotrophs can act as models for studying methanotroph-based methane mitigation from wetland habitats and can be used for various mitigation and valorization applications. (AU)


Asunto(s)
Humedales , Metano , Efecto Invernadero , Gases , Ecosistema , Agua Dulce
2.
J Environ Manage ; 357: 120715, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579465

RESUMEN

The effluents from conventional wastewater treatment plants (WWTP), even if accomplishing quality regulations, substantially differ in their characteristics with those of waters in natural environments. Constructed wetlands (CWs) serve as transitional ecosystems within WWTPs, mitigating these differences and restoring natural features before water is poured into the natural environment. Our study focused on an experimental surface-flow CW naturalizing the WWTP effluent in a semiarid area in Eastern Spain. Despite relatively low pollutant concentrations entering the CW, it effectively further reduced settled organic matter and nitrogen. Dissolved organic matter (DOM) reaching the CW was mainly protein-like, yet optical property changes in the DOM indicated increased humification, aromaticity, and stabilization as it flowed through the CW. Flow cytometry analysis revealed that the CW released less abundant but more active bacterial populations than those received. MiSeq Illumina sequencing highlighted changes in the prokaryotic community composition, with phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria dominating the CW outflow. Functional prediction tools (FaproTax and PICRUSt2) demonstrated a shift towards microbial guilds aligned with those of the natural aquatic environments, increased aerobic chemoheterotrophs, photoautotrophs, and metabolic reactions at higher redox potentials. Enhanced capabilities for degrading plant material correlated well with changes in the DOM pool. Our findings emphasize the role of CWs in releasing biochemically stable DOM and functionally suited microbial populations for natural receiving environments. Consequently, we propose CWs as a naturalization nature-based solution (NBS) in water-scarce regions like the Mediterranean, where reclaimed discharged water can significantly contribute to ecosystem's water resources compared to natural flows.


Asunto(s)
Aguas Residuales , Humedales , Ecosistema , Ciudadanía , Bacterias , Materia Orgánica Disuelta , Región Mediterránea , Eliminación de Residuos Líquidos
3.
J Environ Manage ; 357: 120776, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579468

RESUMEN

Hydro-Fluctuation Belt (HFB), a periodically exposed bank area formed by changes in water level fluctuations, is critical for damaging the reservoir wetland landscape and ecological balance. Thus, it is important to explore the mechanism of hydrological conditions on the plant-soil system of the HFB for protection of the reservoir wetland and landscape restoration. Here, we investigated the response of plant community characteristics and soil environment of the HFB of Tonghui River National Wetland Park (China), is a typical reservoir wetland, to the duration of inundation, as well as the correlation between the distribution of dominant plants and soil pH, nutrient contents, and enzyme activity by linear regression and canonical correlation analyses. The results show that as the duration of inundation decreases, the vegetation within the HFB is successional from annual or biennial herbs to perennial herbs and shrubs, with dominant plant species prominent and uneven distribution of species. Soil nutrient contents and enzyme activities of HFB decreased with increasing inundation duration. Dominant species of HFB plant community are related to soil environment, with water content, pH, urease, and available potassium being principle soil environmental factors affecting their distribution. When HFB was inundated for 0-30 days, soil pH was strongly acidic, with available potassium content above 150 mg kg-1 and higher urease activity, distributed with Arundo donax L., Polygonum perfoliatum L., Alternanthera philoxeroides (Mart.) Griseb., and Daucus carota L. communities. When inundated for 30-80 days, soil pH was acidic, with lower available potassium content (50-150 mg kg-1) and urease activity, distributed with Beckmannia syzigachne (Steud.) Fern.+ Polygonum lapathifolium L., Polygonum lapathifolium L., Medicago lupulina L. + Dysphania ambrosioides L. and Leptochloa panicea (Retz.) Ohwi communities. Using the constructed HFB plant-soil correlation model, changes in the wetland soil environment can be quickly judged by the succession of plant dominant species, which provides a simpler method for the monitoring of the soil environment in the reservoir wetland, and is of great significance for the scientific management and reasonable protection of the reservoir-type wetland ecosystem.


Asunto(s)
Ecosistema , Humedales , Suelo/química , Ureasa , Plantas , Agua , Poaceae , China , Potasio
4.
Conserv Biol ; : e14259, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38571448

RESUMEN

Approximately one quarter of the earth's population directly harvests natural resources to meet their daily needs. These individuals are disproportionately required to alter their behaviors in response to increasing climatic variability and global biodiversity loss. Much of the ever-ambitious global conservation agenda relies on the voluntary uptake of conservation behaviors in such populations. Thus, it is critical to understand how such individuals perceive environmental change and use conservation practices as a tool to protect their well-being. We developed a participatory mapping activity to elicit spatially explicit perceptions of forest change and its drivers across 43 mangrove-dependent communities in Pemba, Tanzania. We administered this activity along with a questionnaire regarding conservation preferences and behaviors to 423 individuals across those 43 communities. We analyzed these data with a set of Bayesian hierarchical statistical models. Perceived cover loss in 50% of a community's mangrove area drove individuals to decrease proposed limits on fuelwood bundles from 2.74 (forest perceived as intact) to 2.37 if participants believed resultant gains in mangrove cover would not be stolen by outsiders. Conversely, individuals who believed their community mangrove forests were at high risk of theft loosened their proposed harvest limits from 1.26 to 2.75 bundles of fuelwood in response to the same perceived forest decline. High rates of intergroup competition and mangrove loss were thus driving a self-reinforcing increase in unsustainable harvesting preferences in community forests in this system. This finding demonstrates a mechanism by which increasing environmental decline may cause communities to forgo conservation practices, rather than adopt them, as is often assumed in much community-based conservation planning. However, we also found that when effective boundaries were present, individuals were willing to limit their own harvests to stem such perceived decline.


Efectos de las percepciones del cambio forestal y la competencia intergrupal en los comportamientos de conservación comunitarios Resumen Aproximadamente una cuarta parte de la población mundial aprovecha directamente los recursos naturales para satisfacer sus necesidades diarias. Estos individuos se ven desproporcionadamente obligados a alterar sus comportamientos en respuesta a la creciente variabilidad climática y la pérdida de biodiversidad global. Gran parte de la ambiciosa agenda de conservación global se basa en la adopción voluntaria de comportamientos de conservación en dichas poblaciones. Por lo tanto, es fundamental comprender cómo esas personas perciben el cambio ambiental y utilizan las prácticas de conservación como herramienta para proteger su bienestar. Desarrollamos una actividad de mapeo participativo para generar percepciones espacialmente explícitas del cambio forestal y sus causantes en 43 comunidades dependientes de manglares en Pemba, Tanzania. Administramos esta actividad junto con un cuestionario sobre preferencias y comportamientos de conservación a 423 personas en esas 43 comunidades. Analizamos estos datos mediante un conjunto de modelos estadísticos jerárquicos bayesianos. La pérdida de cobertura percibida en el 50% del área de manglares de una comunidad llevó a los individuos a reducir los límites propuestos para los paquetes de leña de 2.74 (bosque percibido como intacto) a 2.37 si los participantes creían que las ganancias resultantes en la cobertura de manglares no serían robadas por personas ajenas a la comunidad. Por el contrario, las personas que creían que los bosques de manglares de su comunidad corrían un alto riesgo de robo flexibilizaron los límites de cosecha propuestos de 1.26 a 2.75 haces de leña en respuesta a la misma disminución percibida del bosque. Por lo tanto, las altas tasas de competencia entre grupos y pérdida de manglares estaban impulsando un aumento, que se auto reforzaba, en las preferencias de aprovechamiento insostenibles en los bosques comunitarios de este sistema. Este hallazgo muestra un mecanismo por el cual el creciente deterioro ambiental puede hacer que las comunidades renuncien a las prácticas de conservación, en lugar de adoptarlas, como a menudo se supone en gran parte de la planificación de la conservación basada en la comunidad. Sin embargo, también encontramos que cuando existían límites efectivos, los individuos estaban dispuestos a restringir sus propias cosechas para frenar esa disminución percibida.

5.
Environ Monit Assess ; 196(5): 425, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573498

RESUMEN

The remediation of polluted soil and water stands as a paramount task in safeguarding environmental sustainability and ensuring a dependable water source. Biochar, celebrated for its capacity to enhance soil quality, stimulate plant growth, and adsorb a wide spectrum of contaminants, including organic and inorganic pollutants, within constructed wetlands, emerges as a promising solution. This review article is dedicated to examining the effects of biochar amendments on the efficiency of wastewater purification within constructed wetlands. This comprehensive review entails an extensive investigation of biochar's feedstock selection, production processes, characterization methods, and its application within constructed wetlands. It also encompasses an exploration of the design criteria necessary for the integration of biochar into constructed wetland systems. Moreover, a comprehensive analysis of recent research findings pertains to the role of biochar-based wetlands in the removal of both organic and inorganic pollutants. The principal objectives of this review are to provide novel and thorough perspectives on the conceptualization and implementation of biochar-based constructed wetlands for the treatment of organic and inorganic pollutants. Additionally, it seeks to identify potential directions for future research and application while addressing prevailing gaps in knowledge and limitations. Furthermore, the study delves into the potential limitations and risks associated with employing biochar in environmental remediation. Nevertheless, it is crucial to highlight that there is a significant paucity of data regarding the influence of biochar on the efficiency of wastewater treatment in constructed wetlands, with particular regard to its impact on the removal of both organic and inorganic pollutants.


Asunto(s)
Carbón Orgánico , Contaminantes Ambientales , Humedales , Monitoreo del Ambiente , Biodegradación Ambiental , Suelo , Agua
6.
Environ Monit Assess ; 196(5): 419, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570389

RESUMEN

Seasonally astatic aquatic habitats are important ecologically, municipally, and agriculturally. Regulatory agencies and conservation organizations have developed various plans for protecting or constructing temporary wetlands, resulting in habitat monitoring requirements, particularly as relates to restoration and constructed habitats. Unfortunately, there has been no effort to develop a unified, consistent method for wetland biological monitoring. This is particularly true for habitats important in a regulatory sense. We conducted macroinvertebrate bioassessment in constructed vernal pools in California, USA, to assess habitat functionality. This tool is modified from aquatic bioassessment; a primary tool of regulatory agencies in measuring habitat health and water quality and should be equally applicable to seasonally astatic wetlands globally.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Humedales , Estaciones del Año , Calidad del Agua
7.
Environ Geochem Health ; 46(5): 167, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592380

RESUMEN

Microorganisms are crucial elements of terrestrial ecosystems, which play significant roles in improving soil physicochemical properties, providing plant growth nutrients, degrading toxic and harmful chemicals, and biogeochemical cycling. Variations in the types and quantities of root exudates among different plants greatly alter soil physicochemical properties and result in variations in the diversity, structure, and function of soil microorganisms. Not much is understood about the differences of soil fungi and archaea communities for different plant communities in coastal wetlands, and their response mechanisms to environmental changes. In this study, fungal and archaea communities in soils of Suaeda salsa, Phragmites australis, and Spartina alterniflora in the intertidal habitat of coastal wetlands were selected for research. Soil fungi and archaea were analyzed for diversity, community structure, and function using high throughput ITS and 16S rRNA gene sequencing. The study revealed significant differences in fungi and archaea's diversity and community structure in the rhizosphere soil of three plant communities. At the same time, there is no significant difference in the functional groups. SOM, TP, AP, MC, EC and SOM, TN, TP, AP, MC, EC are the primary environmental determinants affecting changes in soil fungal and archaeal communities, respectively. Variations in the diversity, community structure, and ecological functions of fungi and archaea can be used as indicators characterizing the impact of external disturbances on the soil environment, providing a theoretical foundation for the effective utilization of soil microbial resources, thereby achieving the goal of environmental protection and health promotion.


Asunto(s)
Ecosistema , Humedales , Plantas Tolerantes a la Sal , ARN Ribosómico 16S , Archaea/genética , Poaceae , Suelo , Hongos/genética
8.
Environ Monit Assess ; 196(4): 407, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561512

RESUMEN

Small mammals have a short lifetime and are strictly associated with their environment. This work aimed to use histopathology to assess the health of Holochilus chacarius in a rice agroecosystem in the Pantanal of Mato Grosso do Sul. During necropsy, fragments of the lung, kidney, skin, liver, and reproductive system of 33 animals were collected and submitted to histological processing. Tissue damages were evaluated as mild, moderate, and severe and arranged in a matrix for further statistical analysis. Furthermore, we used generalized linear models to verify the influence of tissue changes on the body condition, obtained by a regression between body mass and length. In the lungs, we found an intense inflammatory infiltrate associated with anthracosis that had a negative influence on the body's condition. Also, we observed degenerative and inflammatory changes in the liver, kidneys, skin, and reproductive system that ranged from mild to moderate. The histopathological lesions observed in this study may be associated with environmental alterations of anthropic origin such as the exposure to soot from wildfires and heavy metals, evidenced by lesions in the lung, kidney, and liver. The present study provided a histopathological matrix as a new approach that allows to classify and quantify the tissue alterations. Tissue changes when associated with body condition demonstrated to be an effective tool to assess the health of small free-living mammals, showing that these animals can be used as bioindicators of environmental condition.


Asunto(s)
Oryza , Roedores , Animales , Arvicolinae , Humedales , Monitoreo del Ambiente , Sigmodontinae
9.
J Gastrointest Surg ; 28(4): 494-500, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583901

RESUMEN

BACKGROUND: Although malnutrition has been linked to worse healthcare outcomes, the broader context of food environments has not been examined relative to surgical outcomes. We sought to define the impact of food environment on postoperative outcomes of patients undergoing resection for colorectal cancer (CRC). METHODS: Patients who underwent surgery for CRC between 2014 and 2020 were identified from the Medicare database. Patient-level data were linked to the United States Department of Agriculture data on food environment. Multivariable regression was used to examine the association between food environment and the likelihood of achieving a textbook outcome (TO). TO was defined as the absence of an extended length of stay (≥75th percentile), postoperative complications, readmission, and mortality within 90 days. RESULTS: A total of 260,813 patients from 3017 counties were included in the study. Patients from unhealthy food environments were more likely to be Black, have a higher Charlson Comorbidity Index, and reside in areas with higher social vulnerability (all P < .01). Patients residing in unhealthy food environments were less likely to achieve a TO than that of patients residing in the healthiest food environments (food swamp: 48.8% vs 52.4%; food desert: 47.9% vs 53.7%; P < .05). On multivariable analysis, individuals residing in the unhealthy food environments had lower odds of achieving a TO than those of patients living in the healthiest food environments (food swamp: OR, 0.86; 95% CI, 0.83-0.90; food desert: OR, 0.79; 95% CI, 0.76-0.82); P < .05). CONCLUSION: The surrounding food environment of patients may serve as a modifiable sociodemographic risk factor that contributes to disparities in postoperative CRC outcomes.


Asunto(s)
Cirugía Colorrectal , Procedimientos Quirúrgicos del Sistema Digestivo , Humanos , Anciano , Estados Unidos/epidemiología , Desiertos Alimentarios , Humedales , Medicare , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología
10.
Environ Monit Assess ; 196(5): 432, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581451

RESUMEN

The East Kolkata Wetlands (EKWT), designated as a Ramsar Site for its crucial role in sewage water purification, agriculture and pisciculture, faces escalating environmental threats due to rapid urbanisation. Employing the pressure-state-response (PSR) framework and Environmental Risk Assessment (ERA), this study spans three decades to elucidate the evolving dynamics of EKWT. Using Landsat TM and OLI images from 1991, 2001, 2011 and 2021, the research identifies key parameters within the PSR framework. Principal component analysis generates environmental risk maps, revealing a 46% increase in urbanisation, leading to reduced vegetation cover and altered land surface conditions. The spatial analysis, utilizing Getis-Ord Gi* statistics, pinpoints risk hotspots and coldspots in the EKWT region. Correlation analysis underscores a robust relationship between urbanisation, climatic response and environmental risk. Decadal ERA exposes a noteworthy surge in high-risk areas, indicating a deteriorating trend. Quantitative assessments pinpoint environmental risk hotspots, emphasizing the imperative for targeted conservation measures. The study establishes a direct correlation between environmental risk and air quality, underscoring the broader implications of EKWT's degradation. While acknowledging the East Kolkata administration's efforts, the research recognises its limitations and advocates a holistic, multidisciplinary approach for future investigations. Recommendations encompass the establishment of effective institutions, real-time monitoring, public engagement and robust anti-pollution measures. In offering quantitative insights, this study provides an evidence-based foundation for conservation strategies and sustainable management practices essential to safeguard the East Kolkata Wetlands.


Asunto(s)
Purificación del Agua , Humedales , Monitoreo del Ambiente/métodos , Agricultura , Aguas del Alcantarillado , Purificación del Agua/métodos
11.
PLoS One ; 19(4): e0301795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38598506

RESUMEN

Wetland vegetation and ecology of Lake Abaya in the southern Ethiopia was studied to determine floristic composition, plant community type and vegetation ecology. A total of 102 plots were laid along transects that were set up preferentially across areas where there were rapid changes in vegetation or marked environmental gradients to collect data on estimate of percentage aerial cover of plant species and environmental variables. Vegetation data was analyzed by agglomerative hierarchical cluster analysis using similarity ratio as a resemblance index and Ward's linkage method. Multivariate data analysis was performed using appropriate packages in R version 2.14.0. Canonical Correspondence Analysis (CCA) was used to explore the relationship between the species composition and environmental variables. The environmental data included in the CCA were determined using stepwise backward and forward selection of variables by ANOVA test. Statistical measurement regarding species diversity, richness and evenness of the plant community types was carried out by using Shannon-Wiener diversity indices. A total of 92 plant species belonging to 66 genera and 34 families were identified. Families Poaceae, Asteraceae, Fabaceae, Cyperaceae, Solanaceae, Euphorbiaceae and Amaranthaceae account for about 56.99% of the total proportion. Based on the cluster analysis, five plant community types were identified. The most important factors influencing the plant species composition and pattern of wetland plant communities were water drainage, water depth, land use, slope, altitude, and hydrogeomorphology. Therefore, these factors should be considered in future management and protection under the circumstance of climate change and human activities.


Asunto(s)
Biodiversidad , Humedales , Humanos , Etiopía , Lagos , Plantas , Agua
12.
Water Sci Technol ; 89(6): 1466-1481, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557712

RESUMEN

Floating treatment wetlands (FTWs) have the potential to improve the quality of wastewater discharges, yet design basics are unavailable to size these systems. This study investigates the effect of FTWs' coverage ratio and hydraulic retention time on agri-food wastewater treatment. This was studied in a pilot-scale experiment comprising four lagoons (6.5 m3 each) fed with real effluent from an existing tertiary treatment lagoon. An evaluation of FTW of different sizes (L24, L48, and L72 representing 24, 48, and 72% of pilot lagoons surface areas) and a control, L0 (without FTW), was performed over 16 months. Overall, L72 and L48 moderately improved total nitrogen (TN) mass removal compared to L0 (p < 0.05), while L24 exhibited similar TN mass removal (p = 0.196). The highest improvement was observed for L72, exhibiting up to 55% (mean of 13%) greater N mass removal than the control. The net increase in TN removal by FTWs was mainly related to denitrification, promoted by decreasing dissolved oxygen for increasing FTW coverage ratio. Residence time, temperature, and dissolved oxygen were the main parameters driving TN removal by FTWs. Retrofitting existing lagoons with FTW can facilitate N retrieval through plant harvesting, thereby reducing N remobilization from sediment (common in conventional lagoons).


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Eliminación de Residuos Líquidos , Desnitrificación , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Oxígeno
13.
Glob Chang Biol ; 30(4): e17280, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613249

RESUMEN

Coastal wetlands play an important role in regulating atmospheric carbon dioxide (CO2) concentrations and contribute significantly to climate change mitigation. However, climate change, reclamation, and restoration have been causing substantial changes in coastal wetland areas and carbon exchange in China during recent decades. Here we compiled a carbon flux database consisting of 15 coastal wetland sites to assess the magnitude, patterns, and drivers of carbon fluxes and to compare fluxes among contrasting natural, disturbed, and restored wetlands. The natural coastal wetlands have the average net ecosystem exchange of CO2 (NEE) of -577 g C m-2 year-1, with -821 g C m-2 year-1 for mangrove forests and -430 g C m-2 year-1 for salt marshes. There are pronounced latitudinal patterns for carbon dioxide exchange of natural coastal wetlands: NEE increased whereas gross primary production (GPP) and respiration of ecosystem decreased with increasing latitude. Distinct environmental factors drive annual variations of GPP between mangroves and salt marshes; temperature was the dominant controlling factor in salt marshes, while temperature, precipitation, and solar radiation were co-dominant in mangroves. Meanwhile, both anthropogenic reclamation and restoration had substantial effects on coastal wetland carbon fluxes, and the effect of the anthropogenic perturbation in mangroves was more extensive than that in salt marshes. Furthermore, from 1980 to 2020, anthropogenic reclamation of China's coastal wetlands caused a carbon loss of ~3720 Gg C, while the mangrove restoration project during the period of 2021-2025 may switch restored coastal wetlands from a carbon source to carbon sink with a net carbon gain of 73 Gg C. The comparison of carbon fluxes among these coastal wetlands can improve our understanding of how anthropogenic perturbation can affect the potentials of coastal blue carbon in China, which has implications for informing conservation and restoration strategies and efforts of coastal wetlands.


Asunto(s)
Ecosistema , Humedales , Dióxido de Carbono , Ciclo del Carbono , China
14.
Environ Monit Assess ; 196(5): 451, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613723

RESUMEN

As the general population's diet has shifted to reflect current weight-loss trends, there has been an increase in zero-calorie artificial sweetener usage. Sucralose (C12H19Cl3O8), commonly known as Splenda® in the USA, is a primary example of these sweeteners. In recent years, sucralose has been identified as an environmental contaminant that cannot easily be broken down via bacterial decomposition. This study focuses on the impact of sucralose presence on microbial communities in brackish and freshwater systems. Microbial respiration and fluorescence were measured as indicators of microbial activity in sucralose-dosed samples taken from both freshwater and estuarine marsh environments. Results showed a significant difference between microbial concentration and respiration when dosed with varying levels of sucralose. Diatom respiration implied a negative correlation of community abundance with sucralose concentration. The freshwater cyanobacterial respiration increased in the presence of sucralose, implying a positive correlation of community abundance with sucralose concentration. This was in direct contrast to its brackish water counterpart. However, further investigation is necessary to confirm any potential utility of these communities in the breakdown of sucralose in the marsh environment.


Asunto(s)
Monitoreo del Ambiente , Sacarosa/análogos & derivados , Humedales , Humanos , Edulcorantes/toxicidad , Agua Dulce , Suelo
15.
PLoS One ; 19(3): e0300485, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38470886

RESUMEN

The wastewater from underground coal gasification (UCG) process has extremely complex composition and high concentrations of toxic and refractory compounds including phenolics, aliphatic and aromatic hydrocarbons, ammonia, cyanides, hazardous metals and metalloids. So, the development of biological processes for treating UCG wastewater poses a serious challenge in the sustainable coal industry. The aim of the study was to develop an innovative and efficient wetland construction technology suitable for a treatment of UCG wastewater using available and low-cost media. During the bioremediation process the toxicity of the raw wastewater decreased significantly between 74%-99%. The toxicity units (TU) ranged from values corresponding to very high acute toxic for raw wastewater to non-toxic for effluents from wetland columns after 60 days of the experiment. The toxicity results correlated with the decrease of some organic and inorganic compounds such as phenols, aromatic hydrocarbons, cyanides, metals and ammonia observed during the bioremediation process. The removal percentage of organic compounds like BTEX, PAHs and phenol was around 99% just after 14 days of treatment. A similar removal rate was indicated for cyanide and metals (Zn, Cr, Cd and Pb). Concluded, in order to effectively assess remediation technologies, it is desirable to consider combination of physicochemical parameters with ecotoxicity measurements. The present findings show that wetland remediation technology can be used to clean-up the heavily contaminated waters from the UCG process. Wetland technology as a nature-based solution has the potential to turn coal gasification wastewater into usable recycled water. It is economically and environmentally alternative treatment method.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Carbón Mineral , Amoníaco , Humedales , Fenoles , Metales , Cianuros , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis
16.
Zootaxa ; 5406(2): 336-342, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38480150

RESUMEN

Continued collecting efforts at the Jiulong National Wetland Park, Zhejiang, East China revealed two additional species of the ant-loving beetle subfamily Pselaphinae (Coleoptera: Staphylinidae): Trisiniotus jiulong sp. nov. and Arthromelodes lianghongbini sp. nov. Both new species are diagnosed, described, and their important characters are illustrated.


Asunto(s)
Hormigas , Escarabajos , Animales , Humedales , Distribución Animal , China
17.
Nature ; 627(8003): 458, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38467882
18.
Proc Biol Sci ; 291(2018): 20240079, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471547

RESUMEN

The fast rate of replacement of natural areas by expanding cities is a key threat to wildlife worldwide. Many wild species occur in cities, yet little is known on the dynamics of urban wildlife assemblages due to species' extinction and colonization that may occur in response to the rapidly evolving conditions within urban areas. Namely, species' ability to spread within urban areas, besides habitat preferences, is likely to shape the fate of species once they occur in a city. Here we use a long-term dataset on mammals occurring in one of the largest and most ancient cities in Europe to assess whether and how spatial spread and association with specific habitats drive the probability of local extinction within cities. Our analysis included mammalian records dating between years 1832 and 2023, and revealed that local extinctions in urban areas are biased towards species associated with wetlands and that were naturally rare within the city. Besides highlighting the role of wetlands within urban areas for conserving wildlife, our work also highlights the importance of long-term biodiversity monitoring in highly dynamic habitats such as cities, as a key asset to better understand wildlife trends and thus foster more sustainable and biodiversity-friendly cities.


Asunto(s)
Ecosistema , Humedales , Animales , Ciudades , Mamíferos , Biodiversidad , Animales Salvajes
19.
Curr Microbiol ; 81(4): 107, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427056

RESUMEN

Rhizospheric microbial community of emergent macrophytes plays an important role in nitrogen removal, especially in the eutrophic wetlands. The objective of this study was to identify the differences in anammox bacterial community composition among different emergent macrophytes and investigate revealed the the main factors affecting on the composition, diversity, and abundance of anammox bacterial community. Results showed that the composition, diversity, and abundance of the anammox community were significantly different between the vegetated sediments of three emergent macrophytes and unvegetated sediment. The composition of the anammox bacterial community was different in the vegetated sediments of different emergent macrophytes. Also, the abundance of nitrogen cycle-related functional genes in the vegetated sediments was found to be higher than that in the unvegetated sediment. Canonical correspondence analysis (CCA) and structural equation models analysis (SEM) showed that salinity and pH were the main environmental factors influencing the composition and diversity of the anammox bacterial community and NO2--N indirectly affected anammox bacterial community diversity by affecting TOC. nirK-type denitrifying bacteria abundance had significant effects on the bacterial community composition, diversity, and abundance of anammox bacteria. The community composition of anammox bacteria varies with emergent macrophyte species. The rhizosphere of emergent macrophytes provides a favorable environment and promotes the growth of nitrogen cycling-related microorganisms that likely accelerate nitrogen removal in eutrophic wetlands.


Asunto(s)
Rizosfera , Humedales , Oxidación Anaeróbica del Amoníaco , Lagos/microbiología , Bacterias/genética , Ciclo del Nitrógeno , Nitrógeno , Oxidación-Reducción , Sedimentos Geológicos/microbiología
20.
Sci Total Environ ; 922: 171361, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38428614

RESUMEN

Wetland degradation can induce alterations in plant biomass, soil properties, and soil ecoenzyme activities, consequently influencing soil organic carbon components. Despite extensive investigations into the relationships among plant characteristics, soil properties, and soil organic carbon components, the enzymatic mechanisms underlying changes in soil organic carbon components, particularly the impact and contribution of ecoenzyme activities, remain poorly understood. This study compared the soil organic carbon components at a depth of 0-20 cm in wetlands in the semi-arid western Songnen Plain under different degradation levels and explored plant biomass, soil properties, and soil ecoenzyme activities. The results showed that the soil total organic carbon, labile organic carbon, and recalcitrant organic carbon contents in the degraded wetlands were generally lower than those in the non-degraded wetlands. Furthermore, the soil nutrient contents and soil ß-1,4-glucosidase, L-leucine aminopeptidase, and acid phosphatase activities were also lower in the degraded wetlands than in the non-degraded wetlands. Vector analysis of enzymatic stoichiometry revealed that wetland degradation did not increase microbial carbon limitation. The soil organic carbon components showed significant positive correlations with plant biomass, soil water content, soil total nitrogen, soil total phosphorus, as well as soil ecoenzyme activities. Variation partitioning analysis revealed that plant biomass, soil properties, soil ecoenzyme activities collectively accounted for 78.5 % variation in soil organic carbon components, among which plant biomass, soil properties, soil ecoenzyme activities, and their interactions explaining 4.2 %, 8.0 %, 7.9 %, and 24.5 % of the variation, respectively. Therefore, the impact of soil ecoenzyme activities and soil properties on soil organic carbon component changes was greater than that of plant biomass, with the interaction of these three factors playing a crucial role in soil organic carbon formation. This study provides a theoretical basis for scientifically evaluating the carbon sink function of degraded wetland soil and preserving the wetland soil carbon pool.


Asunto(s)
Suelo , Humedales , Biomasa , Carbono/análisis , Plantas , Nitrógeno/análisis , Microbiología del Suelo , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...