Your browser doesn't support javascript.
loading
Diclofenac antagonizes peroxisome proliferator-activated receptor-gamma signaling.
Adamson, Douglas J A; Frew, David; Tatoud, Roger; Wolf, C Roland; Palmer, Colin N A.
Affiliation
  • Adamson DJ; Imperial Cancer Research Fund Molecular Pharmacology Unit, Biomedical Research Centre, Ninewells Hospital, Dundee, Scotland, United Kingdom.
Mol Pharmacol ; 61(1): 7-12, 2002 Jan.
Article in En | MEDLINE | ID: mdl-11752200
ABSTRACT
Although nonsteroidal anti-inflammatory drugs (NSAIDs) are used as cancer chemopreventative agents, their mechanism is unclear because NSAIDs have cyclooxygenase-independent actions. We investigated an alternative target for NSAIDs, peroxisome proliferator-activated receptor-gamma (PPARgamma), activation of which decreases cancer cell proliferation. NSAIDs have been shown to activate this receptor, but only at high concentrations. Here, we have examined binding of diclofenac to PPARgamma using a cis-parinaric acid displacement assay and studied the effect of diclofenac effect on PPARgamma trans-activation in a COS-1 cell reporter assay. Unexpectedly, diclofenac bound PPARgamma at therapeutic concentrations (K(i) = 700 nM) but induced only 2-fold activation of PPARgamma at a concentration of 25 microM and antagonized PPARgamma trans-activation by rosiglitazone. This antagonism was overcome with increasing rosiglitazone concentrations, indicating that diclofenac is a partial agonist. No effect of diclofenac was seen without exogenous receptor, confirming that it was working through a PPARgamma-specific mechanism. This is the first description of an NSAID that can antagonize PPARgamma. In addition, this is the first time that an NSAID has been shown to bind this receptor at clinically meaningful concentrations. The physiological relevance of these findings was tested using adipocyte differentiation and cancer cell proliferation assays. Diclofenac decreased PPARgamma-mediated adipose cell differentiation by 60% and inhibited the action of rosiglitazone on the prostate cancer cell line, DU-145, allowing a 3-fold increase in proliferation. This work shows that standard doses of diclofenac may have pharmacodynamic interactions with rosiglitazone and this has therapeutic implications, both in the management of type 2 diabetes and during cancer treatment.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Transcription Factors / Signal Transduction / Anti-Inflammatory Agents, Non-Steroidal / Diclofenac / Receptors, Cytoplasmic and Nuclear / Thiazolidinediones Limits: Animals / Humans Language: En Journal: Mol Pharmacol Year: 2002 Document type: Article Affiliation country:
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Transcription Factors / Signal Transduction / Anti-Inflammatory Agents, Non-Steroidal / Diclofenac / Receptors, Cytoplasmic and Nuclear / Thiazolidinediones Limits: Animals / Humans Language: En Journal: Mol Pharmacol Year: 2002 Document type: Article Affiliation country: