Your browser doesn't support javascript.
loading
The Concept of Divergent Targeting through the Activation and Inhibition of Receptors as a Novel Chemotherapeutic Strategy: Signaling Responses to Strong DNA-Reactive Combinatorial Mimicries.
Watt, Heather L; Rachid, Zakaria; Jean-Claude, Bertrand J.
Affiliation
  • Watt HL; Cancer Drug Research Laboratory, Division of Oncology, Department of Medicine, McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada H3A 1A1.
J Signal Transduct ; 2012: 282050, 2012.
Article in En | MEDLINE | ID: mdl-22523681
ABSTRACT
Recently, we reported the combination of multitargeted ErbB1 inhibitor-DNA damage combi-molecules with OCT in order to downregulate ErbB1 and activate SSTRs. Absence of translation to cell kill was believed to be partially due to insufficient ErbB1 blockage and DNA damage. In this study, we evaluated cell response to molecules that damage DNA more aggressively and induce stronger attenuation of ErbB1 phosphorylation. We used three cell lines expressing low levels (U87MG) or transfected to overexpress wildtype (U87/EGFR) or a variant (U87/EGFRvIII) of ErbB1. The results showed that Iressa ± HN2 and the combi-molecules, ZRBA4 and ZR2003, significantly blocked ErbB1 phosphorylation in U87MG cells. Addition of OCT significantly altered cell cycle distribution. Analysis of the DNA damage response pathway revealed strong upregulation of p53 by HN2 and the combi-molecules. Apoptosis was only induced by a 48 h exposure to HN2. All other treatments resulted in cell necrosis. This is in agreement with Akt-Bad pathway activation and survivin upregulation. Despite strong DNA damaging properties and downregulation of ErbB1 phosphorylation by these molecules, the strongest effect of SSTR activation was on cell cycle distribution. Therefore, any enhanced antiproliferative effects of combining ErbB1 inhibition with SSTR activation must be addressed in the context of cell cycle arrest.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Signal Transduct Year: 2012 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Signal Transduct Year: 2012 Document type: Article