Your browser doesn't support javascript.
loading
Short periods of cyclic mechanical strain enhance triple-supplement directed osteogenesis and bone nodule formation by human embryonic stem cells in vitro.
Li, Mingming; Li, Xiaobing; Meikle, Murray C; Islam, Intekhab; Cao, Tong.
Affiliation
  • Li M; Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore.
Tissue Eng Part A ; 19(19-20): 2130-7, 2013 Oct.
Article in En | MEDLINE | ID: mdl-23614666
ABSTRACT
Human embryonic stem cells (hESCs) are uniquely endowed with a capacity for both self-renewal and multilineage differentiation. The aim of this investigation was to determine if short periods of cyclic mechanical strain enhanced dexamethasone, ascorbic acid, and ß-glycerophosphate (triple-supplement)-induced osteogenesis and bone nodule formation by hESCs. Colonies were cultured for 21 days and divided into control (no stretch) and three treatment groups; these were subjected to in-plane deformation of 2% for 5 s (0.2 Hertz) every 60 s for 1 h on alternate days in BioFlex plates linked to a Flexercell strain unit over the following periods (day 7-13), (day 15-21), and (day 7-21). Numerous bone nodules were formed, which stained positively for osteocalcin and type I collagen; in addition, MTS assays for cell number as well as total collagen assays showed a significant increase in the day 7-13 group compared to controls and other treatment groups. Alizarin Red staining further showed that cyclic mechanical stretching significantly increased the nodule size and mineral density between days 7-13 compared to control cultures and the other two experimental groups. We then performed a real-time polymerase chain reaction (PCR) microarray on the day 7-13 treatment group to identify mechanoresponsive osteogenic genes. Upregulated genes included the transcription factors RUNX2 and SOX9, bone morphogenetic proteins BMP1, BMP4, BMP5, and BMP6, transforming growth factorfamily members TGFB1, TGFB2, and TGFB3, and three genes involved in mineralization-ALPL, BGLAP, and VDR. In conclusion, this investigation has demonstrated that four 1-h episodes of cyclic mechanical strain acted synergistically with triple supplement to enhance osteogenesis and bone nodule formation by cultured hESCs. This suggests the development of methods to engineer three-dimensional constructs of mineralized bone in vitro, could offer an alternative approach to osseous regeneration by producing a biomaterial capable of providing stable surfaces for osteoblasts to synthesize new bone, while at the same time able to be resorbed by an osteoclastic activity-in other words, one that can recapitulate the remodeling dynamics of a naturally occurring bone matrix.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Osteogenesis / Stress, Mechanical / Embryonic Stem Cells Type of study: Prognostic_studies Limits: Animals / Humans Language: En Journal: Tissue Eng Part A Journal subject: BIOTECNOLOGIA / HISTOLOGIA Year: 2013 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Osteogenesis / Stress, Mechanical / Embryonic Stem Cells Type of study: Prognostic_studies Limits: Animals / Humans Language: En Journal: Tissue Eng Part A Journal subject: BIOTECNOLOGIA / HISTOLOGIA Year: 2013 Document type: Article Affiliation country:
...