Your browser doesn't support javascript.
loading
Nuclear Factor Erythroid 2-Related Factor 2 Deficiency Results in Amplification of the Liver Fat-Lowering Effect of Estrogen.
Rui, Wenjuan; Zou, Yuhong; Lee, Joonyong; Nambiar, Shashank Manohar; Lin, Jingmei; Zhang, Linjie; Yang, Yan; Dai, Guoli.
Affiliation
  • Rui W; Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and
  • Zou Y; Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and
  • Lee J; Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and
  • Nambiar SM; Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and
  • Lin J; Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and
  • Zhang L; Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and
  • Yang Y; Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and
  • Dai G; Department of Pharmacology and Immunology, Anhui Medical University, Hefei, China (W.R., L.Z., Y.Y.); Department of Biology, School of Science, Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana (W.R., Y.Z., S.M.N., G.D.); and
J Pharmacol Exp Ther ; 358(1): 14-21, 2016 07.
Article in En | MEDLINE | ID: mdl-27189962
ABSTRACT
Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates multiple biologic processes, including hepatic lipid metabolism. Estrogen exerts actions affecting energy homeostasis, including a liver fat-lowering effect. Increasing evidence indicates the crosstalk between these two molecules. The aim of this study was to evaluate whether Nrf2 modulates estrogen signaling in hepatic lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) was induced in wild-type and Nrf2-null mice fed a high-fat diet and the liver fat-lowering effect of exogenous estrogen was subsequently assessed. We found that exogenous estrogen eliminated 49% and 90% of hepatic triglycerides in wild-type and Nrf2-null mice with NAFLD, respectively. This observation demonstrates that Nrf2 signaling is antagonistic to estrogen signaling in hepatic fat metabolism; thus, Nrf2 absence results in striking amplification of the liver fat-lowering effect of estrogen. In addition, we found the association of trefoil factor 3 and fatty acid binding protein 5 with the liver fat-lowering effect of estrogen. In summary, we identified Nrf2 as a novel and potent inhibitor of estrogen signaling in hepatic lipid metabolism. Our finding may provide a potential strategy to treat NAFLD by dually targeting Nrf2 and estrogen signaling.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Estrogen Receptor alpha / Estradiol / Fatty Acid-Binding Proteins / NF-E2-Related Factor 2 / Lipid Metabolism / Liver / Neoplasm Proteins Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Pharmacol Exp Ther Year: 2016 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Estrogen Receptor alpha / Estradiol / Fatty Acid-Binding Proteins / NF-E2-Related Factor 2 / Lipid Metabolism / Liver / Neoplasm Proteins Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Pharmacol Exp Ther Year: 2016 Document type: Article