Your browser doesn't support javascript.
loading
Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering.
Roedig, Philip; Duman, Ramona; Sanchez-Weatherby, Juan; Vartiainen, Ismo; Burkhardt, Anja; Warmer, Martin; David, Christian; Wagner, Armin; Meents, Alke.
Affiliation
  • Roedig P; Deutsches Elektronen-Synchrotron DESY, Photon Science, Notkestrasse 85, Hamburg 22607, Germany.
  • Duman R; Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK.
  • Sanchez-Weatherby J; Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK.
  • Vartiainen I; Paul Scherrer Institut, Villigen PSI, 5232, Switzerland.
  • Burkhardt A; Deutsches Elektronen-Synchrotron DESY, Photon Science, Notkestrasse 85, Hamburg 22607, Germany.
  • Warmer M; Deutsches Elektronen-Synchrotron DESY, Photon Science, Notkestrasse 85, Hamburg 22607, Germany.
  • David C; Paul Scherrer Institut, Villigen PSI, 5232, Switzerland.
  • Wagner A; Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK.
  • Meents A; Deutsches Elektronen-Synchrotron DESY, Photon Science, Notkestrasse 85, Hamburg 22607, Germany.
J Appl Crystallogr ; 49(Pt 3): 968-975, 2016 Jun 01.
Article in En | MEDLINE | ID: mdl-27275143
ABSTRACT
Recent success at X-ray free-electron lasers has led to serial crystallography experiments staging a comeback at synchrotron sources as well. With crystal lifetimes typically in the millisecond range and the latest-generation detector technologies with high framing rates up to 1 kHz, fast sample exchange has become the bottleneck for such experiments. A micro-patterned chip has been developed from single-crystalline silicon, which acts as a sample holder for up to several thousand microcrystals at a very low background level. The crystals can be easily loaded onto the chip and excess mother liquor can be efficiently removed. Dehydration of the crystals is prevented by keeping them in a stream of humidified air during data collection. Further sealing of the sample holder, for example with Kapton, is not required. Room-temperature data collection from insulin crystals loaded onto the chip proves the applicability of the chip for macromolecular crystallography. Subsequent structure refinements reveal no radiation-damage-induced structural changes for insulin crystals up to a dose of 565.6 kGy, even though the total diffraction power of the crystals has on average decreased to 19.1% of its initial value for the same dose. A decay of the diffracting power by half is observed for a dose of D1/2 = 147.5 ±â€…19.1 kGy, which is about 1/300 of the dose before crystals show a similar decay at cryogenic temperatures.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Appl Crystallogr Year: 2016 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Appl Crystallogr Year: 2016 Document type: Article Affiliation country: