Your browser doesn't support javascript.
loading
Elegant pH-Responsive Nanovehicle for Drug Delivery Based on Triazine Dendrimer Modified Magnetic Nanoparticles.
Landarani-Isfahani, Amir; Moghadam, Majid; Mohammadi, Shima; Royvaran, Maryam; Moshtael-Arani, Naimeh; Rezaei, Saghar; Tangestaninejad, Shahram; Mirkhani, Valiollah; Mohammadpoor-Baltork, Iraj.
Affiliation
  • Landarani-Isfahani A; Department of Chemistry, University of Isfahan , Isfahan 81746-73441, Iran.
  • Moghadam M; Department of Chemistry, University of Isfahan , Isfahan 81746-73441, Iran.
  • Mohammadi S; Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan , Isfahan 81746-73441, Iran.
  • Royvaran M; Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan , Isfahan 81746-73441, Iran.
  • Moshtael-Arani N; Young Researchers and Elite Club, Kashan Branch, Islamic Azad University , Kashan 8715998151, Iran.
  • Rezaei S; Department of Chemistry, University of Isfahan , Isfahan 81746-73441, Iran.
  • Tangestaninejad S; Department of Chemistry, University of Isfahan , Isfahan 81746-73441, Iran.
  • Mirkhani V; Department of Chemistry, University of Isfahan , Isfahan 81746-73441, Iran.
  • Mohammadpoor-Baltork I; Department of Chemistry, University of Isfahan , Isfahan 81746-73441, Iran.
Langmuir ; 33(34): 8503-8515, 2017 08 29.
Article in En | MEDLINE | ID: mdl-28732161
ABSTRACT
Owing to properties of magnetic nanoparticles and elegant three-dimensional macromolecule architectural features, dendrimeric structures have been investigated as nanoscale drug delivery systems. In this work, a novel magnetic nanocarrier, generation two (G2) triazine dendrimer modified Fe3O4@SiO2 magnetic nanoparticles (MNP-G2), was designed, fabricated, and characterized by Fourier transform infrared (FT-IR), thermal gravimetric analysis (TGA), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The prepared MNP-G2 nanosystem offers a new formulation that combines the unique properties of MNPs and triazine dendrimer as a biocompatible material for biomedical applications. To demonstrate the potential of MNP-G2, the nanoparticles were loaded with methotrexate (MTX), a proven chemotherapy drug. The MTX-loaded MNP-G2 (MNP-G2/MTX) exhibited a high drug-loading capacity of MTX and the excellent ability for controlled drug release. The cytotoxicity of MNP-G2/MTX using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide based assay and MCF-7, HeLa, and Caov-4 cell lines revealed that MNP-G2/MTX was more active against the tumor cells than the free drug in a mildly acidic environment. The results of hemolysis, hemagglutination, and coagulation assays confirmed the good blood safety of MNP-G2/MTX. Moreover, the cell uptake and intracellular distribution of MNP-G2/MTX were studied by flow cytometry analysis and confocal laser scanning microscopy (CLSM). This research suggests that MNP-G2/MTX with good biocompatibility and degradability can be selected as an ideal and effective drug carrier in targeted biomedicine studies especially anticancer applications.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Magnetite Nanoparticles Limits: Humans Language: En Journal: Langmuir Journal subject: QUIMICA Year: 2017 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Magnetite Nanoparticles Limits: Humans Language: En Journal: Langmuir Journal subject: QUIMICA Year: 2017 Document type: Article Affiliation country: