Your browser doesn't support javascript.
loading
Optimization of CoaD Inhibitors against Gram-Negative Organisms through Targeted Metabolomics.
Rath, Christopher M; Benton, Bret M; de Vicente, Javier; Drumm, Joseph E; Geng, Mei; Li, Cindy; Moreau, Robert J; Shen, Xiaoyu; Skepper, Colin K; Steffek, Micah; Takeoka, Kenneth; Wang, Lisha; Wei, Jun-Rong; Xu, Wenjian; Zhang, Qiong; Feng, Brian Y.
Affiliation
  • Rath CM; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • Benton BM; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • de Vicente J; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • Drumm JE; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • Geng M; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • Li C; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • Moreau RJ; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • Shen X; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • Skepper CK; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • Steffek M; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • Takeoka K; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • Wang L; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • Wei JR; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • Xu W; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • Zhang Q; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
  • Feng BY; Novartis Institutes for BioMedical Research , 5300 Chiron Way , Emeryville , California 94608 , United States.
ACS Infect Dis ; 4(3): 391-402, 2018 03 09.
Article in En | MEDLINE | ID: mdl-29243909
ABSTRACT
Drug-resistant Gram-negative bacteria are of increasing concern worldwide. Novel antibiotics are needed, but their development is complicated by the requirement to simultaneously optimize molecules for target affinity and cellular potency, which can result in divergent structure-activity relationships (SARs). These challenges were exemplified during our attempts to optimize inhibitors of the bacterial enzyme CoaD originally identified through a biochemical screen. To facilitate lead optimization, we developed mass spectroscopy assays based on the hypothesis that levels of CoA metabolites would reflect the cellular enzymatic activity of CoaD. Using these methods, we were able to monitor the effects of cellular enzyme inhibition at compound concentrations up to 100-fold below the minimum inhibitory concentration (MIC), a common metric of growth inhibition. Furthermore, we generated a panel of efflux pump mutants to dissect the susceptibility of a representative CoaD inhibitor to efflux. These approaches allowed for a nuanced understanding of the permeability and efflux liabilities of the series and helped guide optimization efforts to achieve measurable MICs against wild-type E. coli.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Escherichia coli / Metabolomics / Anti-Bacterial Agents / Nucleotidyltransferases Language: En Journal: ACS Infect Dis Year: 2018 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Escherichia coli / Metabolomics / Anti-Bacterial Agents / Nucleotidyltransferases Language: En Journal: ACS Infect Dis Year: 2018 Document type: Article Affiliation country:
...