Your browser doesn't support javascript.
loading
Self-generated surface magnetic fields inhibit laser-driven sheath acceleration of high-energy protons.
Nakatsutsumi, M; Sentoku, Y; Korzhimanov, A; Chen, S N; Buffechoux, S; Kon, A; Atherton, B; Audebert, P; Geissel, M; Hurd, L; Kimmel, M; Rambo, P; Schollmeier, M; Schwarz, J; Starodubtsev, M; Gremillet, L; Kodama, R; Fuchs, J.
Affiliation
  • Nakatsutsumi M; LULI-CNRS, École Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités, Palaiseau cedex, F-91128, France. motoaki.nakatsutsumi@xfel.eu.
  • Sentoku Y; European XFEL, GmbH, Holzkoppel 4, 22869, Schenefeld, Germany. motoaki.nakatsutsumi@xfel.eu.
  • Korzhimanov A; Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan. motoaki.nakatsutsumi@xfel.eu.
  • Chen SN; Institute of Laser Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
  • Buffechoux S; Department of Physics, University of Nevada, Reno, Nevada, 89557, USA.
  • Kon A; Institute of Applied Physics, 46 Ulyanov Street, 603950, Nizhny Novgorod, Russia.
  • Atherton B; LULI-CNRS, École Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités, Palaiseau cedex, F-91128, France.
  • Audebert P; Institute of Applied Physics, 46 Ulyanov Street, 603950, Nizhny Novgorod, Russia.
  • Geissel M; LULI-CNRS, École Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités, Palaiseau cedex, F-91128, France.
  • Hurd L; Institute of Laser Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
  • Kimmel M; Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
  • Rambo P; Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, 679-5198, Japan.
  • Schollmeier M; Sandia National Laboratories, Albuquerque, NM, 87123, USA.
  • Schwarz J; LULI-CNRS, École Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités, Palaiseau cedex, F-91128, France.
  • Starodubtsev M; Sandia National Laboratories, Albuquerque, NM, 87123, USA.
  • Gremillet L; LULI-CNRS, École Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universités, Palaiseau cedex, F-91128, France.
  • Kodama R; Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.
  • Fuchs J; Sandia National Laboratories, Albuquerque, NM, 87123, USA.
Nat Commun ; 9(1): 280, 2018 01 18.
Article in En | MEDLINE | ID: mdl-29348402
ABSTRACT
High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~105 T at laser intensities ~1021 W cm-2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2018 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2018 Document type: Article Affiliation country: