Your browser doesn't support javascript.
loading
Effects of the exposure of TiO2 nanoparticles on basil (Ocimum basilicum) for two generations.
Tan, Wenjuan; Du, Wenchao; Darrouzet-Nardi, Anthony J; Hernandez-Viezcas, Jose A; Ye, Yuqing; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L.
Affiliation
  • Tan W; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W. University Ave., El
  • Du W; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China.
  • Darrouzet-Nardi AJ; Biological Sciences Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States.
  • Hernandez-Viezcas JA; Chemistry Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States
  • Ye Y; Chemistry Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States.
  • Peralta-Videa JR; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; Chemistry Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; University of California Center for Env
  • Gardea-Torresdey JL; Environmental Science and Engineering PhD Program, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; Chemistry Department, The University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, United States; University of California Center for Env
Sci Total Environ ; 636: 240-248, 2018 Sep 15.
Article in En | MEDLINE | ID: mdl-29705436
ABSTRACT
There is a lack of information about the transgenerational effects of titanium dioxide nanoparticles (nano-TiO2) in plants. This study aimed to evaluate the impacts of successive exposure of nano-TiO2 with different surface properties to basil (Ocimum basilicum). Seeds from plants exposed or re-exposed to pristine, hydrophobic, or hydrophilic nano-TiO2 were cultivated for 65 days in soil unamended or amended with 750 mg·kg-1 of the respective particles. Plant growth, concentration of titanium and essential elements, as well as content of carbohydrates and chlorophyll were evaluated. There were no differences on Ti concentration in roots of plants sequentially exposed to pristine or hydrophobic nano-TiO2, or in roots of plants exposed to the corresponding particle, only in the second cycle. However, sequential exposure to hydrophilic particles resulted in 65.2% less Ti in roots, compared to roots of plants exposed the same particles, only in the second cycle. The Ti concentrations in shoots were similar in all treatments. On the other hand, pristine and hydrophilic particles reduced Mg in root by 115% and 81%, respectively, while pristine and hydrophobic particles reduced Ni in shoot by 84% and 75%, respectively, compared to unexposed plants in both cycles. Sequential exposure to pristine nano-TiO2 increased stomatal conductance (214%, p ≤ 0.10), compared to plants that were never exposed. Hydrophobic and hydrophilic nano-TiO2 reduced chlorophyll b (52%) and total chlorophyll (30%) but increased total sugar (186%) and reducing sugar (145%), compared to unexposed plants in both cycles. Sequential exposure to hydrophobic or hydrophilic nano-TiO2 resulted in more adverse effects on photosynthesis but in positive effects on plant growth, compared to pristine nano-TiO2.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Titanium / Ocimum basilicum / Nanoparticles Language: En Journal: Sci Total Environ Year: 2018 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Titanium / Ocimum basilicum / Nanoparticles Language: En Journal: Sci Total Environ Year: 2018 Document type: Article
...