Your browser doesn't support javascript.
loading
Mutual detoxification of mercury and selenium in unicellular Tetrahymena.
Liu, Cheng-Bin; Zhang, Li; Wu, Qi; Qu, Guang-Bo; Yin, Yong-Guang; Hu, Li-Gang; Shi, Jian-Bo; Jiang, Gui-Bin.
Affiliation
  • Liu CB; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhang L; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
  • Wu Q; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Qu GB; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Yin YG; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Hu LG; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
  • Shi JB; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and
  • Jiang GB; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
J Environ Sci (China) ; 68: 143-150, 2018 Jun.
Article in En | MEDLINE | ID: mdl-29908733
ABSTRACT
Selenium (Se) is commonly recognized as a protective element with an antagonistic effect against mercury (Hg) toxicity. However, the mechanisms of this Hg-Se antagonism are complex and remain controversial. To gain insight into the Hg-Se antagonism, a type of unicellular eukaryotic protozoa (Tetrahymena malaccensis, T. malaccensis) was selected and individually or jointly exposed to two Hg and three Se species. We found that Se species showed different toxic effects on the proliferation of T. malaccensis with the toxicity following the order selenite (Se(IV))>selenomethionine (SeMeth)>selenate (Se(VI)). The Hg-Se antagonism in Tetrahymena was observed because the joint toxicity significantly decreased under co-exposure to highly toxic dosages of Hg and Se versus individual toxicity. Unlike Se(IV) and Se(VI), non-toxic dosage of SeMeth significantly decreased the Hg toxicity, revealing the influence of the Se species and dosages on the Hg-Se antagonism. Unexpectedly, inorganic divalent Hg (Hg2+) and monomethylmercury (MeHg) also displayed detoxification towards extremely highly toxic dosages of Se, although their detoxifying efficiency was discrepant. These results suggested mutual Hg-Se detoxification in T. malaccensis, which was highly dependent on the dosages and species of both elements. As compared to other species, SeMeth and MeHg promoted the Hg-Se joint effects to a higher degree. Additionally, the Hg contents decreased for all the Hg-Se co-exposed groups, revealing a sequestering effect of Se towards Hg in T. malaccensis.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Selenium / Tetrahymena / Water Pollutants, Chemical / Mercury Language: En Journal: J Environ Sci (China) Journal subject: SAUDE AMBIENTAL Year: 2018 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Selenium / Tetrahymena / Water Pollutants, Chemical / Mercury Language: En Journal: J Environ Sci (China) Journal subject: SAUDE AMBIENTAL Year: 2018 Document type: Article Affiliation country:
...