Your browser doesn't support javascript.
loading
The role of heparan sulfate in host macrophage infection by Leishmania species.
Maciej-Hulme, Marissa L; Skidmore, Mark A; Price, Helen P.
Affiliation
  • Maciej-Hulme ML; Radboudumc, Geert Grooteplein 10, Nijmegen 6525 GA, The Netherlands marissa.maciej-hulme@radboudumc.nl.
  • Skidmore MA; School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, U.K.
  • Price HP; School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, U.K.
Biochem Soc Trans ; 46(4): 789-796, 2018 08 20.
Article in En | MEDLINE | ID: mdl-29934302
ABSTRACT
The leishmaniases are a group of neglected tropical diseases caused by parasites from the Leishmania genus. More than 20 Leishmania species are responsible for human disease, causing a broad spectrum of symptoms ranging from cutaneous lesions to a fatal visceral infection. There is no single safe and effective approach to treat these diseases and resistance to current anti-leishmanial drugs is emerging. New drug targets need to be identified and validated to generate novel treatments. Host heparan sulfates (HSs) are abundant, heterogeneous polysaccharides displayed on proteoglycans that bind various ligands, including cell surface proteins expressed on Leishmania promastigote and amastigote parasites. The fine chemical structure of HS is formed by a plethora of specific enzymes during biosynthesis, with various positions (N-, 2-O-, 6-O- and 3-O-) on the carbon sugar backbone modified with sulfate groups. Post-biosynthesis mechanisms can further modify the sulfation pattern or size of the polysaccharide, altering ligand affinity to moderate biological functions. Chemically modified heparins used to mimic the heterogeneous nature of HS influence the affinity of different Leishmania species, demonstrating the importance of specific HS chemical sequences in parasite interaction. However, the endogenous structures of host HSs that might interact with Leishmania parasites during host invasion have not been elucidated, nor has the role of HSs in host-parasite biology. Decoding the structure of HSs on target host cells will increase understanding of HS/parasite interactions in leishmaniasis, potentiating identification of new opportunities for the development of novel treatments.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Heparitin Sulfate / Leishmania / Macrophages Limits: Animals / Humans Language: En Journal: Biochem Soc Trans Year: 2018 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Heparitin Sulfate / Leishmania / Macrophages Limits: Animals / Humans Language: En Journal: Biochem Soc Trans Year: 2018 Document type: Article Affiliation country: