Your browser doesn't support javascript.
loading
Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization.
Rekik, Hatem; Zaraî Jaouadi, Nadia; Bouacem, Khelifa; Zenati, Bilal; Kourdali, Sidali; Badis, Abdelmalek; Annane, Rachid; Bouanane-Darenfed, Amel; Bejar, Samir; Jaouadi, Bassem.
Affiliation
  • Rekik H; Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road o
  • Zaraî Jaouadi N; Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road o
  • Bouacem K; Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of
  • Zenati B; National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA), 11, Bd Amirouche PO Box 67, Bou Ismaïl 42415, Tipaza, Algeria.
  • Kourdali S; National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA), 11, Bd Amirouche PO Box 67, Bou Ismaïl 42415, Tipaza, Algeria.
  • Badis A; National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA), 11, Bd Amirouche PO Box 67, Bou Ismaïl 42415, Tipaza, Algeria; Laboratory of Natural Products Chemistry and Biomolecules (LNPC-BioM), Faculty of Sciences, University of Blida 1, Road of Soumaâ, PO Box 270, 09000 Blid
  • Annane R; National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA), 11, Bd Amirouche PO Box 67, Bou Ismaïl 42415, Tipaza, Algeria.
  • Bouanane-Darenfed A; Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria.
  • Bejar S; Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road o
  • Jaouadi B; Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, PO Box 1177, Sfax 3018, Tunisia; Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road o
Int J Biol Macromol ; 125: 514-525, 2019 Mar 15.
Article in En | MEDLINE | ID: mdl-30528991
ABSTRACT
A new manganese peroxidase-producing white-rot basidiomycete fungus was isolated from symptomatic wood of the camphor trees Cinnamomum camphora (L.) at the Hamma Botanical Garden (Algeria) and identified as Trametes pubescens strain i8. The enzyme was purified (MnP TP55) to apparent electrophoretic homogeneity and biochemically characterized. The specific activity and Reinheitzahl value of the purified enzyme were 221 U/mg and 2.25, respectively. MALDI-TOF/MS analysis revealed that the purified enzyme was a monomer with a molecular mass of 55.2 kDa. The NH2-terminal sequence of the first 26 amino acid residues of MnP TP55 showed high similarity with those of white-rot fungal peroxidases. It revealed optimal activity at pH 5 and 40 °C. This peroxidase was completely inhibited by sodium azide and potassium cyanide, suggesting the presence of heme-components in its tertiary structure. Interestingly, MnP TP55 showed higher catalytic efficiency, organic solvent-tolerance, dye-decolorization ability, and detergent-compatibility than that of horseradish peroxidase (HRP) from roots of Armoracia rustanica, manganese peroxidase from Bjerkandera adusta strain CX-9 (MnP BA30), and manganese peroxidase from Phanerochaete chrysosporium (MnP PC). Overall, the findings provide strong support for the potential candidacy of MnP TP55 for environmental applications, mainly the development of enzyme-based technologies for lignin biodegradation, textile-dyes biodecolorization, and detergent formulations.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Peroxidases / Coriolaceae / Trametes / Fungi / Lignin Type of study: Prognostic_studies Country/Region as subject: Africa Language: En Journal: Int J Biol Macromol Year: 2019 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Peroxidases / Coriolaceae / Trametes / Fungi / Lignin Type of study: Prognostic_studies Country/Region as subject: Africa Language: En Journal: Int J Biol Macromol Year: 2019 Document type: Article