Loss of Nmp4 optimizes osteogenic metabolism and secretion to enhance bone quality.
Am J Physiol Endocrinol Metab
; 316(5): E749-E772, 2019 05 01.
Article
in En
| MEDLINE
| ID: mdl-30645175
A goal of osteoporosis therapy is to restore lost bone with structurally sound tissue. Mice lacking the transcription factor nuclear matrix protein 4 (Nmp4, Zfp384, Ciz, ZNF384) respond to several classes of osteoporosis drugs with enhanced bone formation compared with wild-type (WT) animals. Nmp4-/- mesenchymal stem/progenitor cells (MSPCs) exhibit an accelerated and enhanced mineralization during osteoblast differentiation. To address the mechanisms underlying this hyperanabolic phenotype, we carried out RNA-sequencing and molecular and cellular analyses of WT and Nmp4-/- MSPCs during osteogenesis to define pathways and mechanisms associated with elevated matrix production. We determined that Nmp4 has a broad impact on the transcriptome during osteogenic differentiation, contributing to the expression of over 5,000 genes. Phenotypic anchoring of transcriptional data was performed for the hypothesis-testing arm through analysis of cell metabolism, protein synthesis and secretion, and bone material properties. Mechanistic studies confirmed that Nmp4-/- MSPCs exhibited an enhanced capacity for glycolytic conversion: a key step in bone anabolism. Nmp4-/- cells showed elevated collagen translation and secretion. The expression of matrix genes that contribute to bone material-level mechanical properties was elevated in Nmp4-/- cells, an observation that was supported by biomechanical testing of bone samples from Nmp4-/- and WT mice. We conclude that loss of Nmp4 increases the magnitude of glycolysis upon the metabolic switch, which fuels the conversion of the osteoblast into a super-secretor of matrix resulting in more bone with improvements in intrinsic quality.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Osteoblasts
/
Osteogenesis
/
Transcription Factors
/
Bone Matrix
/
Nuclear Matrix-Associated Proteins
/
Mesenchymal Stem Cells
Limits:
Animals
Language:
En
Journal:
Am J Physiol Endocrinol Metab
Journal subject:
ENDOCRINOLOGIA
/
FISIOLOGIA
/
METABOLISMO
Year:
2019
Document type:
Article
Country of publication: