Your browser doesn't support javascript.
loading
Reverse-engineering the locomotion of a stem amniote.
Nyakatura, John A; Melo, Kamilo; Horvat, Tomislav; Karakasiliotis, Kostas; Allen, Vivian R; Andikfar, Amir; Andrada, Emanuel; Arnold, Patrick; Lauströer, Jonas; Hutchinson, John R; Fischer, Martin S; Ijspeert, Auke J.
Affiliation
  • Nyakatura JA; AG Morphologie und Formengeschichte, Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany. john.nyakatura@hu-berlin.de.
  • Melo K; Bild Wissen Gestaltung, Ein interdisziplinäres Labor, Humboldt Universität zu Berlin, Berlin, Germany. john.nyakatura@hu-berlin.de.
  • Horvat T; Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Karakasiliotis K; Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Allen VR; Biorobotics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
  • Andikfar A; Structure & Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, North Mymms, UK.
  • Andrada E; Fakultät Design, Medien und Information, Department Design, Hochschule für Angewandte Wissenschaften, Hamburg, Germany.
  • Arnold P; Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst-Haeckel-Haus und Biologiedidaktik, Friedrich-Schiller-Universität Jena, Jena, Germany.
  • Lauströer J; Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst-Haeckel-Haus und Biologiedidaktik, Friedrich-Schiller-Universität Jena, Jena, Germany.
  • Hutchinson JR; Fakultät Design, Medien und Information, Department Design, Hochschule für Angewandte Wissenschaften, Hamburg, Germany.
  • Fischer MS; Knowledge Visualisation, Zürcher Hochschule der Künste, Zurich, Switzerland.
  • Ijspeert AJ; Structure & Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, North Mymms, UK.
Nature ; 565(7739): 351-355, 2019 01.
Article in En | MEDLINE | ID: mdl-30651613
ABSTRACT
Reconstructing the locomotion of extinct vertebrates offers insights into their palaeobiology and helps to conceptualize major transitions in vertebrate evolution1-4. However, estimating the locomotor behaviour of a fossil species remains a challenge because of the limited information preserved and the lack of a direct correspondence between form and function5,6. The evolution of advanced locomotion on land-that is, locomotion that is more erect, balanced and mechanically power-saving than is assumed of anamniote early tetrapods-has previously been linked to the terrestrialization and diversification of amniote lineages7. To our knowledge, no reconstructions of the locomotor characteristics of stem amniotes based on multiple quantitative methods have previously been attempted previous methods have relied on anatomical features alone, ambiguous locomotor information preserved in ichnofossils or unspecific modelling of locomotor dynamics. Here we quantitatively examine plausible gaits of the stem amniote Orobates pabsti, a species that is known from a complete body fossil preserved in association with trackways8. We reconstruct likely gaits that match the footprints, and investigate whether Orobates exhibited locomotor characteristics that have previously been linked to the diversification of crown amniotes. Our integrative methodology uses constraints derived from biomechanically relevant metrics, which also apply to extant tetrapods. The framework uses in vivo assessment of locomotor mechanics in four extant species to guide an anatomically informed kinematic simulation of Orobates, as well as dynamic simulations and robotics to filter the parameter space for plausible gaits. The approach was validated using two extant species that have different morphologies, gaits and footprints. Our metrics indicate that Orobates exhibited more advanced locomotion than has previously been assumed for earlier tetrapods7,9, which suggests that advanced terrestrial locomotion preceded the diversification of crown amniotes. We provide an accompanying website for the exploration of the filters that constrain our simulations, which will allow revision of our approach using new data, assumptions or methods.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Phylogeny / Vertebrates / Fossils / Locomotion Type of study: Prognostic_studies Limits: Animals Language: En Journal: Nature Year: 2019 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Phylogeny / Vertebrates / Fossils / Locomotion Type of study: Prognostic_studies Limits: Animals Language: En Journal: Nature Year: 2019 Document type: Article Affiliation country: