Your browser doesn't support javascript.
loading
SPG7 targets the m-AAA protease complex to process MCU for uniporter assembly, Ca2+ influx, and regulation of mitochondrial permeability transition pore opening.
Hurst, Stephen; Baggett, Ariele; Csordas, Gyorgy; Sheu, Shey-Shing.
Affiliation
  • Hurst S; Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and.
  • Baggett A; Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and.
  • Csordas G; Department of Pathology, Anatomy, and Cell Biology, Mitocare Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
  • Sheu SS; Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107 and. Electronic address: shey-shing.sheu@jefferson.edu.
J Biol Chem ; 294(28): 10807-10818, 2019 07 12.
Article in En | MEDLINE | ID: mdl-31097542
ABSTRACT
The mitochondrial matrix ATPase associated with diverse cellular activities (m-AAA) protease spastic paraplegia 7 (SPG7) has been recently implicated as either a negative or positive regulatory component of the mitochondrial permeability transition pore (mPTP) by two research groups. To address this controversy, we investigated possible mechanisms that explain the discrepancies between these two studies. We found that loss of the SPG7 gene increased resistance to Ca2+-induced mPTP opening. However, this occurs independently of cyclophilin D (cyclosporine A insensitive) rather it is through decreased mitochondrial Ca2+ concentrations and subsequent adaptations mediated by impaired formation of functional mitochondrial Ca2+ uniporter complexes. We found that SPG7 directs the m-AAA complex to favor association with the mitochondrial Ca2+ uniporter (MCU) and MCU processing regulates higher order MCU-complex formation. The results suggest that SPG7 does not constitute a core component of the mPTP but can modulate mPTP through regulation of the basal mitochondrial Ca2+ concentration.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Metalloendopeptidases / Calcium Channels / ATPases Associated with Diverse Cellular Activities Limits: Humans Language: En Journal: J Biol Chem Year: 2019 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Metalloendopeptidases / Calcium Channels / ATPases Associated with Diverse Cellular Activities Limits: Humans Language: En Journal: J Biol Chem Year: 2019 Document type: Article
...