Your browser doesn't support javascript.
loading
Colonic Motility and Jejunal Vagal Afferent Firing Rates Are Decreased in Aged Adult Male Mice and Can Be Restored by an Aminosterol.
West, Christine L; Amin, Jessica Y; Farhin, Sohana; Stanisz, Andrew M; Mao, Yu-Kang; Kunze, Wolfgang A.
Affiliation
  • West CL; St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada.
  • Amin JY; Department of Biology, McMaster University, Hamilton, ON, Canada.
  • Farhin S; St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada.
  • Stanisz AM; St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada.
  • Mao YK; St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada.
  • Kunze WA; St. Joseph's Healthcare, The Brain-Body Institute, McMaster University, Hamilton, ON, Canada.
Front Neurosci ; 13: 955, 2019.
Article in En | MEDLINE | ID: mdl-31551703
ABSTRACT
There is a general decline in gastrointestinal function in old age including decreased intestinal motility, sensory signaling, and afferent sensitivity. There is also increased prevalence of significant constipation in aged populations. We hypothesized this may be linked to reduced colonic motility and alterations in vagal-gut-brain sensory signaling. Using in vitro preparations from young (3 months) and old (18-24 months) male CD1 mice we report functional age-related differences in colonic motility and jejunal mesenteric afferent firing. Furthermore, we tested the effect of the aminosterol squalamine on colonic motility and jejunal vagal firing rate. Old mice had significantly reduced velocity of colonic migrating motor complexes (MMC) by 27% compared to young mice (p = 0.0161). Intraluminal squalamine increased colonic MMC velocity by 31% in old mice (p = 0.0150), which also had significantly reduced mesenteric afferent single-unit firing rates from the jejunum by 51% (p < 0.0001). The jejunal vagal afferent firing rate was reduced in aged mice by 62% (p = 0.0004). While the time to peak response to squalamine was longer in old mice compared to young mice (18.82 ± 1.37 min vs. 12.95 ± 0.99 min; p = 0.0182), it significantly increased vagal afferent firing rate by 36 and 56% in young and old mice, respectively (p = 0.0006, p = 0.0013). Our results show for the first time that the jejunal vagal afferent firing rate is reduced in aged-mice. They also suggest that there is translational potential for the therapeutic use of squalamine in the treatment of age-related constipation and dysmotility.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Risk_factors_studies Language: En Journal: Front Neurosci Year: 2019 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Risk_factors_studies Language: En Journal: Front Neurosci Year: 2019 Document type: Article Affiliation country:
...