Your browser doesn't support javascript.
loading
Desmoplastic Infantile Ganglioglioma: A MAPK Pathway-Driven and Microglia/Macrophage-Rich Neuroepithelial Tumor.
Blessing, Melissa M; Blackburn, Patrick R; Krishnan, Chandra; Harrod, Virginia L; Barr Fritcher, Emily G; Zysk, Christopher D; Jackson, Rory A; Milosevic, Dragana; Nair, Asha A; Davila, Jaime I; Balcom, Jessica R; Jenkins, Robert B; Halling, Kevin C; Kipp, Benjamin R; Nageswara Rao, Amulya A; Laack, Nadia N; Daniels, David J; Macon, William R; Ida, Cristiane M.
Affiliation
  • Blessing MM; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Blackburn PR; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Krishnan C; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Harrod VL; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Barr Fritcher EG; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Zysk CD; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Jackson RA; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Milosevic D; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Nair AA; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Davila JI; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Balcom JR; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Jenkins RB; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Halling KC; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Kipp BR; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Nageswara Rao AA; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Laack NN; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Daniels DJ; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Macon WR; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
  • Ida CM; Departments of Laboratory Medicine and Pathology, Health Sciences Research, Pediatrics, Radiation Oncology, and Neurologic Surgery, Mayo Clinic, Rochester, Minnesota; and Departments of Pathology and Neuro-Oncology, Dell Children's Medical Center, Austin, Texas.
J Neuropathol Exp Neurol ; 78(11): 1011-1021, 2019 11 01.
Article in En | MEDLINE | ID: mdl-31562743
ABSTRACT
MAPK pathway activation has been recurrently observed in desmoplastic infantile ganglioglioma/astrocytoma (DIG/DIA) with reported disproportionally low mutation allele frequencies relative to the apparent high tumor content, suggesting that MAPK pathway alterations may be subclonal. We sought to expand the number of molecularly profiled cases and investigate if tumor cell composition could account for the observed low mutation allele frequencies. Molecular (targeted neuro-oncology next-generation sequencing/RNA sequencing and OncoScan microarray) and immunohistochemical (CD68-PGM1/CD163/CD14/CD11c/lysozyme/CD3/CD20/CD34/PD-L1) studies were performed in 7 DIG. Activating MAPK pathway alterations were identified in 4 (57%) cases 3 had a BRAF mutation (V600E/V600D/V600_W604delinsDQTDG, at 8%-27% variant allele frequency) and 1 showed a TPM3-NRTK1 fusion. Copy number changes were infrequent and nonrecurrent. All tumors had at least 30% of cells morphologically and immunophenotypically consistent with microglial/macrophage lineage. Two subtotally resected tumors regrew; 1 was re-excised and received adjuvant treatment (chemotherapy/targeted therapy), with clinical response to targeted therapy only. Even with residual tumor, all patients are alive (median follow-up, 83 months; 19-139). This study further supports DIG as another MAPK pathway-driven neuroepithelial tumor, thus expanding potential treatment options for tumors not amenable to surgical cure, and suggests that DIG is a microglia/macrophage-rich neuroepithelial tumor with frequent low driver mutation allele frequencies.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain Neoplasms / Neoplasms, Neuroepithelial / Microglia / Ganglioglioma / MAP Kinase Signaling System / Macrophages Limits: Female / Humans / Infant / Male Language: En Journal: J Neuropathol Exp Neurol Year: 2019 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain Neoplasms / Neoplasms, Neuroepithelial / Microglia / Ganglioglioma / MAP Kinase Signaling System / Macrophages Limits: Female / Humans / Infant / Male Language: En Journal: J Neuropathol Exp Neurol Year: 2019 Document type: Article