Established rodent community delays recovery of dominant competitor following experimental disturbance.
Proc Biol Sci
; 286(1917): 20192269, 2019 12 18.
Article
in En
| MEDLINE
| ID: mdl-31822258
Human activities alter processes that control local biodiversity, causing changes in the abundance and identity of species in ecosystems. However, restoring biodiversity to a previous state is rarely as simple as reintroducing lost species or restoring processes to their pre-disturbance state. Theory suggests that established species can impede shifts in species composition via a variety of mechanisms, including direct interference, pre-empting resources or habitat alteration. These mechanisms can create transitory dynamics that delay convergence to an expected end state. We use an experimental manipulation of a desert rodent community to examine differences in recolonization dynamics of a dominant competitor (kangaroo rats of the genus Dipodomys) when patches were already occupied by an existing rodent community relative to when patches were empty. Recovery of kangaroo rat populations was slow on plots with an established community, taking approximately 2 years, in contrast with rapid recovery on empty plots with no established residents (approx. three months). These results demonstrate that the presence of an established alternate community inhibits recolonization by new species, even those that should be dominant in the community. This has important implications for understanding how biodiversity may change in the future, and what processes may slow or prevent this change.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Competitive Behavior
/
Dipodomys
Limits:
Animals
Language:
En
Journal:
Proc Biol Sci
Journal subject:
BIOLOGIA
Year:
2019
Document type:
Article
Affiliation country:
Country of publication: