Defining the TLT-1 interactome from resting and activated human platelets.
J Proteomics
; 215: 103638, 2020 03 20.
Article
in En
| MEDLINE
| ID: mdl-31923473
The triggering receptor expressed on myeloid cells (TREM) protein family forms a class of type I transmembrane proteins expressed in immune cells that play important roles in innate and adaptive immune responses. The TREM family member TREM-like transcript 1 (TLT-1, also TREML1) is expressed in megakaryocytes and packaged into platelet granules. TLT-1 binds fibrinogen and plays a role in bleeding initiated by inflammatory insults. Here, we describe a proteomics screen that maps the TLT-1 interactome in resting and activated human platelets. Several identified TLT-1 interactors are involved in cell adhesion and migration, as well as platelet activation. Select interactors, including ß3-integrin, RACK1, GRB2, and Rabs 5A, 7, and 11A, were additionally characterized in co-immunoprecipitation/immunoblotting experiments. Finally, several phosphorylation sites were found on immunoprecipitated TLT-1, including Thr280, a novel, regulated site on a conserved residue near the TLT-1 ITIM regulatory sequence. SIGNIFICANCE: Platelet function relies on the secretion of active molecules from intracellular vesicles, or granules, which contain soluble and membrane-bound proteins that are essential for platelet aggregation, coagulation reactions, and pathogen defense mechanisms. TLT-1 is sequestered in α-granules and transported to the plasma membrane, where it plays a unique role in hemostasis after inflammatory insults. Despite the known importance of TLT-1 in platelet biology, our knowledge of TLT-1 mechanistic signaling is limited. This study defines the TLT-1 interactome in resting and active human platelets, identifying several novel TLT-1 interactors, as well as TLT-1 phosphorylation sites, all with likely signaling implications in platelet aggregation dynamics.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Blood Platelets
/
Receptors, Immunologic
Type of study:
Prognostic_studies
Limits:
Humans
Language:
En
Journal:
J Proteomics
Journal subject:
BIOQUIMICA
Year:
2020
Document type:
Article
Country of publication: