Your browser doesn't support javascript.
loading
Ion channel noise shapes the electrical activity of endocrine cells.
Richards, David M; Walker, Jamie J; Tabak, Joel.
Affiliation
  • Richards DM; Living Systems Institute, University of Exeter, Exeter, United Kingdom.
  • Walker JJ; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom.
  • Tabak J; Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom.
PLoS Comput Biol ; 16(4): e1007769, 2020 04.
Article in En | MEDLINE | ID: mdl-32251433
ABSTRACT
Endocrine cells in the pituitary gland typically display either spiking or bursting electrical activity, which is related to the level of hormone secretion. Recent work, which combines mathematical modelling with dynamic clamp experiments, suggests the difference is due to the presence or absence of a few large-conductance potassium channels. Since endocrine cells only contain a handful of these channels, it is likely that stochastic effects play an important role in the pattern of electrical activity. Here, for the first time, we explicitly determine the effect of such noise by studying a mathematical model that includes the realistic noisy opening and closing of ion channels. This allows us to investigate how noise affects the electrical activity, examine the origin of spiking and bursting, and determine which channel types are responsible for the greatest noise. Further, for the first time, we address the role of cell size in endocrine cell electrical activity, finding that larger cells typically display more bursting, while the smallest cells almost always only exhibit spiking behaviour.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Action Potentials / Endocrine Cells / Ion Channels / Models, Neurological / Neurons Type of study: Prognostic_studies Limits: Animals Language: En Journal: PLoS Comput Biol Journal subject: BIOLOGIA / INFORMATICA MEDICA Year: 2020 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Action Potentials / Endocrine Cells / Ion Channels / Models, Neurological / Neurons Type of study: Prognostic_studies Limits: Animals Language: En Journal: PLoS Comput Biol Journal subject: BIOLOGIA / INFORMATICA MEDICA Year: 2020 Document type: Article Affiliation country:
...