Your browser doesn't support javascript.
loading
Structure of the essential inner membrane lipopolysaccharide-PbgA complex.
Clairfeuille, Thomas; Buchholz, Kerry R; Li, Qingling; Verschueren, Erik; Liu, Peter; Sangaraju, Dewakar; Park, Summer; Noland, Cameron L; Storek, Kelly M; Nickerson, Nicholas N; Martin, Lynn; Dela Vega, Trisha; Miu, Anh; Reeder, Janina; Ruiz-Gonzalez, Maria; Swem, Danielle; Han, Guanghui; DePonte, Daniel P; Hunter, Mark S; Gati, Cornelius; Shahidi-Latham, Sheerin; Xu, Min; Skelton, Nicholas; Sellers, Benjamin D; Skippington, Elizabeth; Sandoval, Wendy; Hanan, Emily J; Payandeh, Jian; Rutherford, Steven T.
Affiliation
  • Clairfeuille T; Structural Biology, Genentech Inc., South San Francisco, CA, USA.
  • Buchholz KR; Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
  • Li Q; Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA.
  • Verschueren E; Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA.
  • Liu P; Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA.
  • Sangaraju D; Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA, USA.
  • Park S; Translational Immunology, Genentech Inc., South San Francisco, CA, USA.
  • Noland CL; Structural Biology, Genentech Inc., South San Francisco, CA, USA.
  • Storek KM; Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
  • Nickerson NN; Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
  • Martin L; BioMolecular Resources, Genentech Inc., South San Francisco, CA, USA.
  • Dela Vega T; BioMolecular Resources, Genentech Inc., South San Francisco, CA, USA.
  • Miu A; Biochemical & Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA.
  • Reeder J; Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA, USA.
  • Ruiz-Gonzalez M; Discovery Chemistry Departments, Genentech Inc., South San Francisco, CA, USA.
  • Swem D; Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
  • Han G; Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA.
  • DePonte DP; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Hunter MS; Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Gati C; Bioscience Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Shahidi-Latham S; Stanford University, Department of Structural Biology, Stanford, CA, USA.
  • Xu M; Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA, USA.
  • Skelton N; Translational Immunology, Genentech Inc., South San Francisco, CA, USA.
  • Sellers BD; Discovery Chemistry Departments, Genentech Inc., South San Francisco, CA, USA.
  • Skippington E; Discovery Chemistry Departments, Genentech Inc., South San Francisco, CA, USA.
  • Sandoval W; Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA, USA.
  • Hanan EJ; Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA.
  • Payandeh J; Discovery Chemistry Departments, Genentech Inc., South San Francisco, CA, USA. hanan.emily@gene.com.
  • Rutherford ST; Structural Biology, Genentech Inc., South San Francisco, CA, USA. payandeh.jian@gene.com.
Nature ; 584(7821): 479-483, 2020 08.
Article in En | MEDLINE | ID: mdl-32788728
ABSTRACT
Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6-9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10-12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cell Membrane / Lipopolysaccharides / Escherichia coli Proteins / Escherichia coli Type of study: Prognostic_studies Language: En Journal: Nature Year: 2020 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cell Membrane / Lipopolysaccharides / Escherichia coli Proteins / Escherichia coli Type of study: Prognostic_studies Language: En Journal: Nature Year: 2020 Document type: Article Affiliation country: