Your browser doesn't support javascript.
loading
Electronic correlations and transport in iron at Earth's core conditions.
Pourovskii, L V; Mravlje, J; Pozzo, M; Alfè, D.
Affiliation
  • Pourovskii LV; CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128, Palaiseau, France. leonid@cpht.polytechnique.fr.
  • Mravlje J; Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France. leonid@cpht.polytechnique.fr.
  • Pozzo M; Jozef Stefan Institute, SI-1000, Ljubljana, Slovenia.
  • Alfè D; Department of Earth Sciences and London Centre for Nanotechnology, University College London, Gower Street, London, WC1E 6BT, UK.
Nat Commun ; 11(1): 4105, 2020 Aug 14.
Article in En | MEDLINE | ID: mdl-32796852
ABSTRACT
The transport properties of iron under Earth's inner core conditions are essential input for the geophysical modelling but are poorly constrained experimentally. Here we show that the thermal and electrical conductivity of iron at those conditions remains high even if the electron-electron-scattering (EES) is properly taken into account. This result is obtained by ab initio simulations taking into account consistently both thermal disorder and electronic correlations. Thermal disorder suppresses the non-Fermi-liquid behavior of the body-centered cubic iron phase, hence, reducing the EES; the total calculated thermal conductivity of this phase is 220 Wm-1 K-1 with the EES reduction not exceeding 20%. The EES and electron-lattice scattering are intertwined resulting in breaking of the Matthiessen's rule with increasing EES. In the hexagonal close-packed iron the EES is also not increased by thermal disorder and remains weak. Our main finding thus holds for the both likely iron phases in the inner core.

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2020 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2020 Document type: Article Affiliation country: