Your browser doesn't support javascript.
loading
Climate controls on erosion in tectonically active landscapes.
Adams, B A; Whipple, K X; Forte, A M; Heimsath, A M; Hodges, K V.
Affiliation
  • Adams BA; School of Earth Sciences, University of Bristol, Bristol, UK. byron.adams@bristol.ac.uk.
  • Whipple KX; School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA.
  • Forte AM; Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, USA.
  • Heimsath AM; School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA.
  • Hodges KV; School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA.
Sci Adv ; 6(42)2020 Oct.
Article in En | MEDLINE | ID: mdl-33067243
ABSTRACT
The ongoing debate about the nature of coupling between climate and tectonics in mountain ranges derives, in part, from an imperfect understanding of how topography, climate, erosion, and rock uplift are interrelated. Here, we demonstrate that erosion rate is nonlinearly related to fluvial relief with a proportionality set by mean annual rainfall. These relationships can be quantified for tectonically active landscapes, and calculations based on them enable estimation of erosion where observations are lacking. Tests of the predictive power of this relationship in the Himalaya, where erosion is well constrained, affirm the value of our approach. Our model allows estimation of erosion rates in fluvial landscapes using readily available datasets, and the underlying relationship between erosion and rainfall offers the promise of a deeper understanding of how climate and tectonic evolution affect erosion and topography in space and time and of the potential influence of climate on tectonics.

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Sci Adv Year: 2020 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Sci Adv Year: 2020 Document type: Article Affiliation country: