Your browser doesn't support javascript.
loading
Genomic Analysis Enlightens Agaricales Lifestyle Evolution and Increasing Peroxidase Diversity.
Ruiz-Dueñas, Francisco J; Barrasa, José M; Sánchez-García, Marisol; Camarero, Susana; Miyauchi, Shingo; Serrano, Ana; Linde, Dolores; Babiker, Rashid; Drula, Elodie; Ayuso-Fernández, Iván; Pacheco, Remedios; Padilla, Guillermo; Ferreira, Patricia; Barriuso, Jorge; Kellner, Harald; Castanera, Raúl; Alfaro, Manuel; Ramírez, Lucía; Pisabarro, Antonio G; Riley, Robert; Kuo, Alan; Andreopoulos, William; LaButti, Kurt; Pangilinan, Jasmyn; Tritt, Andrew; Lipzen, Anna; He, Guifen; Yan, Mi; Ng, Vivian; Grigoriev, Igor V; Cullen, Daniel; Martin, Francis; Rosso, Marie-Noëlle; Henrissat, Bernard; Hibbett, David; Martínez, Angel T.
Affiliation
  • Ruiz-Dueñas FJ; Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain.
  • Barrasa JM; Life Sciences Department, Alcalá University, Alcalá de Henares, Spain.
  • Sánchez-García M; Biology Department, Clark University, Worcester, MA, USA.
  • Camarero S; Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain.
  • Miyauchi S; INRAE, Laboratory of Excellence ARBRE, Champenoux, France.
  • Serrano A; Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain.
  • Linde D; Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain.
  • Babiker R; Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain.
  • Drula E; Architecture et Fonction des Macromolécules Biologiques, CNRS/Aix-Marseille University, Marseille, France.
  • Ayuso-Fernández I; Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain.
  • Pacheco R; Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain.
  • Padilla G; Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain.
  • Ferreira P; Biochemistry and Molecular and Cellular Biology Department and BIFI, Zaragoza University, Zaragoza, Spain.
  • Barriuso J; Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain.
  • Kellner H; International Institute Zittau, Technische Universität Dresden, Zittau, Germany.
  • Castanera R; Institute for Multidisciplinary Research in Applied Biology, IMAB-UPNA, Pamplona, Spain.
  • Alfaro M; Institute for Multidisciplinary Research in Applied Biology, IMAB-UPNA, Pamplona, Spain.
  • Ramírez L; Institute for Multidisciplinary Research in Applied Biology, IMAB-UPNA, Pamplona, Spain.
  • Pisabarro AG; Institute for Multidisciplinary Research in Applied Biology, IMAB-UPNA, Pamplona, Spain.
  • Riley R; US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA.
  • Kuo A; US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA.
  • Andreopoulos W; US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA.
  • LaButti K; US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA.
  • Pangilinan J; US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA.
  • Tritt A; US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA.
  • Lipzen A; US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA.
  • He G; US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA.
  • Yan M; US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA.
  • Ng V; US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA.
  • Grigoriev IV; US Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Lab, Berkeley, CA, USA.
  • Cullen D; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA.
  • Martin F; Forest Products Laboratory, US Department of Agriculture, Madison, WI, USA.
  • Rosso MN; INRAE, Laboratory of Excellence ARBRE, Champenoux, France.
  • Henrissat B; INRAE, Biodiversité et Biotechnologie Fongiques, Aix-Marseille University, Marseille, France.
  • Hibbett D; Architecture et Fonction des Macromolécules Biologiques, CNRS/Aix-Marseille University, Marseille, France.
  • Martínez AT; Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
Mol Biol Evol ; 38(4): 1428-1446, 2021 04 13.
Article in En | MEDLINE | ID: mdl-33211093
As actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates-namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose-methanol-choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases-we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestral-sequence reconstruction revealing several major evolutionary pathways and mapped the appearance of the different enzyme types in a time-calibrated species tree.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Peroxidases / Phylogeny / Genome, Fungal / Agaricales / Lignin Language: En Journal: Mol Biol Evol Journal subject: BIOLOGIA MOLECULAR Year: 2021 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Peroxidases / Phylogeny / Genome, Fungal / Agaricales / Lignin Language: En Journal: Mol Biol Evol Journal subject: BIOLOGIA MOLECULAR Year: 2021 Document type: Article Affiliation country: Country of publication: