Your browser doesn't support javascript.
loading
Alpha-enolase (ENO1), identified as an antigen to monoclonal antibody 12C7, promotes the self-renewal and malignant phenotype of lung cancer stem cells by AMPK/mTOR pathway.
Shu, Xiong; Cao, Kai-Yue; Liu, Hui-Qi; Yu, Long; Sun, Li-Xin; Yang, Zhi-Hua; Wu, Cheng-Ai; Ran, Yu-Liang.
Affiliation
  • Shu X; Laboratory of Molecular Orthopaedics, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, No. 31 Xinjiekou E Road, Xicheng, Beijing, 100035, People's Republic of China.
  • Cao KY; Department of Pathology, Tianjin First Central Hospital, Tianjin, People's Republic of China.
  • Liu HQ; Department of Basic Medical Science, Medical School of Qinghai University, Xining, People's Republic of China.
  • Yu L; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021, People's Republic of China.
  • Sun LX; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021, People's Republic of China.
  • Yang ZH; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021, People's Republic of China.
  • Wu CA; Laboratory of Molecular Orthopaedics, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, No. 31 Xinjiekou E Road, Xicheng, Beijing, 100035, People's Republic of China. wuchengai05@163.com.
  • Ran YL; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Subdistrict, Chaoyang, Beijing, 100021, People's Republic of China. ran_yuliang@126
Stem Cell Res Ther ; 12(1): 119, 2021 02 12.
Article in En | MEDLINE | ID: mdl-33579362
BACKGROUND: Tumor-associated antigens (TAAs) can be targeted in cancer therapy. We previously identified a monoclonal antibody (mAb) 12C7, which presented anti-tumor activity in lung cancer stem cells (LCSCs). Here, we aimed to identify the target antigen for 12C7 and confirm its role in LCSCs. METHODS: Immunofluorescence was used for antigen localization. After targeted antigen purification by electrophoresis and immunoblot, the antigen was identified by LC-MALDI-TOF/TOF mass spectrometry, immunofluorescence, and immunoprecipitation. The overexpression or silence of ENO1 was induced by lentiviral transduction. Self-renewal, growth, and invasion of LCSCs were evaluated by sphere formation, colony formation, and invasion assay, respectively. High-throughput transcriptome sequencing (RNA-seq) and bioinformatics analysis were performed to analyze downstream targets and pathways of targeted antigen. RESULTS: Targeted antigen showed a surface antigen expression pattern, and the 43-55 kDa protein band was identified as α-enolase (ENO1). Self-renewal, growth, and invasion abilities of LCSCs were remarkably inhibited by ENO1 downregulation, while enhanced by ENO1 upregulation. RNA-seq and bioinformatics analysis eventually screened 4 self-renewal-related and 6 invasion-related differentially expressed genes. GSEA analysis and qRT-PCR verified that ENO1 regulated self-renewal, invasion-related genes, and pathways. KEGG pathway analysis and immunoblot demonstrated that ENO1 inactivated AMPK pathway and activated mTOR pathway in LCSCs. CONCLUSIONS: ENO1 is identified as a targeted antigen of mAb 12C7 and plays a pivotal role in facilitating self-renewal, growth, and invasion of LCSCs. These findings provide a potent therapeutic target for the stem cell therapy for lung cancer and have potential to improve the anti-tumor activity of 12C7.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Phosphopyruvate Hydratase / Neoplasms Type of study: Prognostic_studies Language: En Journal: Stem Cell Res Ther Year: 2021 Document type: Article Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Phosphopyruvate Hydratase / Neoplasms Type of study: Prognostic_studies Language: En Journal: Stem Cell Res Ther Year: 2021 Document type: Article Country of publication: