Your browser doesn't support javascript.
loading
Apolipoprotein A-I mimetic peptide inhibits atherosclerosis by increasing tetrahydrobiopterin via regulation of GTP-cyclohydrolase 1 and reducing uncoupled endothelial nitric oxide synthase activity.
Ning, Da-Sheng; Ma, Jian; Peng, Yue-Ming; Li, Yan; Chen, Ya-Ting; Li, Shang-Xuan; Liu, Zui; Li, Yu-Quan; Zhang, Yi-Xin; Jian, Yu-Peng; Ou, Zhi-Jun; Ou, Jing-Song.
Affiliation
  • Ning DS; Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangd
  • Ma J; Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangd
  • Peng YM; Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangd
  • Li Y; Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangd
  • Chen YT; Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangd
  • Li SX; Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangd
  • Liu Z; Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangd
  • Li YQ; Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangd
  • Zhang YX; Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen Universit
  • Jian YP; Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangd
  • Ou ZJ; Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen Universit
  • Ou JS; Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, PR China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, PR China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, PR China; Guangd
Atherosclerosis ; 328: 83-91, 2021 07.
Article in En | MEDLINE | ID: mdl-34118596
ABSTRACT
BACKGROUND AND

AIMS:

The apolipoprotein A-I mimetic peptide D-4F, among its anti-atherosclerotic effects, improves vasodilation through mechanisms not fully elucidated yet.

METHODS:

Low-density lipoprotein (LDL) receptor null (LDLr-/-) mice were fed Western diet with or without D-4F. We then measured atherosclerotic lesion formation, endothelial nitric oxide synthase (eNOS) phosphorylation and its association with heat shock protein 90 (HSP90), nitric oxide (NO) and superoxide anion (O2•-) production, and tetrahydrobiopterin (BH4) and GTP-cyclohydrolase 1 (GCH-1) concentration in the aorta. Human umbilical vein endothelial cells (HUVECs) and aortas were treated with oxidized LDL (oxLDL) with or without D-4F; subsequently, BH4 and GCH-1 concentration, NO and O2•- production, eNOS association with HSP90, and endothelium-dependent vasodilation were measured.

RESULTS:

Unexpectedly, eNOS phosphorylation, eNOS-HSP90 association, and O2•- production were increased, whereas BH4 and GCH-1 concentration and NO production were reduced in atherosclerosis. D-4F significantly inhibited atherosclerosis, eNOS phosphorylation, eNOS-HSP90 association, and O2•- generation but increased NO production and BH4 and GCH-1 concentration. OxLDL reduced NO production and BH4 and GCH-1 concentration but enhanced O2•- generation and eNOS association with HSP90, and impaired endothelium-dependent vasodilation. D-4F inhibited the overall effects of oxLDL.

CONCLUSIONS:

Hypercholesterolemia enhanced uncoupled eNOS activity by decreasing GCH-1 concentration, thereby reducing BH4 levels. D-4F reduced uncoupled eNOS activity by increasing BH4 levels through GCH-1 expression and decreasing eNOS phosphorylation and eNOS-HSP90 association. Our findings elucidate a novel mechanism by which hypercholesterolemia induces atherosclerosis and D-4F inhibits it, providing a potential therapeutic approach.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Atherosclerosis / Nitric Oxide Synthase Type III Limits: Animals Language: En Journal: Atherosclerosis Year: 2021 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Atherosclerosis / Nitric Oxide Synthase Type III Limits: Animals Language: En Journal: Atherosclerosis Year: 2021 Document type: Article