Electrochemical Lithium Storage Performance of Molten Salt Derived V2SnC MAX Phase.
Nanomicro Lett
; 13(1): 158, 2021 Jul 22.
Article
in En
| MEDLINE
| ID: mdl-34292406
MAX phases are gaining attention as precursors of two-dimensional MXenes that are intensively pursued in applications for electrochemical energy storage. Here, we report the preparation of V2SnC MAX phase by the molten salt method. V2SnC is investigated as a lithium storage anode, showing a high gravimetric capacity of 490 mAh g-1 and volumetric capacity of 570 mAh cm-3 as well as superior rate performance of 95 mAh g-1 (110 mAh cm-3) at 50 C, surpassing the ever-reported performance of MAX phase anodes. Supported by operando X-ray diffraction and density functional theory, a charge storage mechanism with dual redox reaction is proposed with a Sn-Li (de)alloying reaction that occurs at the edge sites of V2SnC particles where Sn atoms are exposed to the electrolyte followed by a redox reaction that occurs at V2C layers with Li. This study offers promise of using MAX phases with M-site and A-site elements that are redox active as high-rate lithium storage materials.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Nanomicro Lett
Year:
2021
Document type:
Article
Country of publication: