Your browser doesn't support javascript.
loading
Stretchable Conductive Fabric Enabled By Surface Functionalization of Commercial Knitted Cloth.
Liu, Haojun; Zhong, Xianmei; He, Xin; Li, Yushan; Zhou, Ningjing; Ma, Zhijun; Zhu, Dezhi; Ji, Huijiao.
Affiliation
  • Liu H; State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineerin
  • Zhong X; Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou 646000, Jiangyang District, Sichuan, P. R. China.
  • He X; State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineerin
  • Li Y; State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineerin
  • Zhou N; State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineerin
  • Ma Z; State Key Laboratory of Luminescent Materials &Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineerin
  • Zhu D; Zhejiang Lab, Research Center of Intelligent Sensing, South China University of Technology, Wenyi West Road No. 1818, Hangzhou 311121, P. R. China.
  • Ji H; School of Mechanical and Automobile Engineering, South China University of Technology, Wushan Road No. 381, Guangzhou 510640, Tianhe District, P. R. China.
ACS Appl Mater Interfaces ; 13(46): 55656-55665, 2021 Nov 24.
Article in En | MEDLINE | ID: mdl-34758625
ABSTRACT
Textile-based stretchable electronic devices are one of the best candidates for future wearable applications, as they can simultaneously provide high compliance and wearing comfort to the human body. Stretchable conductive textile is the fundamental building block for constructing high-performance textile-based stretchable electronic devices. Here, we report a simple strategy for the fabrication of stretchable conductive fabric using commercial knitted cloth as a substrate. Briefly, we coated the fibers of the fabric with a thin layer of poly(styrene-block-butadiene-block-styrene) (SBS) by dip-coating. Then, silver nanoparticles (AgNPs) were loaded on the fabric by sequential absorption and in situ reduction. After loading AgNPs, the conductivity of the fabric could be as high as ∼800 S/m, while its maximal strain at break was higher than 540%. Meanwhile, such fabric also possesses excellent permeability, robust endurance to repeated stretching, long-time washing, and mechanical rubbing or tearing. We further approve that the fabric is less cytotoxic to mammalian skin and antibacterial to microbial, making it safe for on-skin applications. With these multifarious advantages, the fabric developed here is promising for on-skin wearable applications. As a proof-of-concept, we demonstrate its use as an electrode for collecting electrocardiograph signals and electrothermal therapy.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2021 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2021 Document type: Article