Comparative assessment of favipiravir and remdesivir against human coronavirus NL63 in molecular docking and cell culture models.
Sci Rep
; 11(1): 23465, 2021 12 06.
Article
in En
| MEDLINE
| ID: mdl-34873274
Human coronavirus NL63 (HCoV-NL63) mainly affects young children and immunocompromised patients, causing morbidity and mortality in a subset of patients. Since no specific treatment is available, this study aims to explore the anti-SARS-CoV-2 agents including favipiravir and remdesivir for treating HCoV-NL63 infection. We first successfully modelled the 3D structure of HCoV-NL63 RNA-dependent RNA polymerase (RdRp) based on the experimentally solved SARS-CoV-2 RdRp structure. Molecular docking indicated that favipiravir has similar binding affinities to SARS-CoV-2 and HCoV-NL63 RdRp with LibDock scores of 75 and 74, respectively. The LibDock scores of remdesivir to SARS-CoV-2 and HCoV-NL63 were 135 and 151, suggesting that remdesivir may have a higher affinity to HCoV-NL63 compared to SARS-CoV-2 RdRp. In cell culture models infected with HCoV-NL63, both favipiravir and remdesivir significantly inhibited viral replication and production of infectious viruses. Overall, remdesivir compared to favipiravir is more potent in inhibiting HCoV-NL63 in cell culture. Importantly, there is no evidence of resistance development upon long-term exposure to remdesivir. Furthermore, combining favipiravir or remdesivir with the clinically used antiviral cytokine interferon-alpha resulted in synergistic effects. These findings provided a proof-of-concept that anti-SARS-CoV-2 drugs, in particular remdesivir, have the potential to be repurposed for treating HCoV-NL63 infection.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Antiviral Agents
/
Pyrazines
/
RNA-Dependent RNA Polymerase
/
Adenosine Monophosphate
/
Alanine
/
Coronavirus NL63, Human
/
Amides
Type of study:
Prognostic_studies
Limits:
Animals
/
Humans
Language:
En
Journal:
Sci Rep
Year:
2021
Document type:
Article
Affiliation country:
Country of publication: