Your browser doesn't support javascript.
loading
Exposure to environmentally relevant concentrations of ambient fine particulate matter (PM2.5) depletes the ovarian follicle reserve and causes sex-dependent cardiovascular changes in apolipoprotein E null mice.
Luderer, Ulrike; Lim, Jinhwan; Ortiz, Laura; Nguyen, Johnny D; Shin, Joyce H; Allen, Barrett D; Liao, Lisa S; Malott, Kelli; Perraud, Veronique; Wingen, Lisa M; Arechavala, Rebecca J; Bliss, Bishop; Herman, David A; Kleinman, Michael T.
Affiliation
  • Luderer U; Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA, 92617, USA. uluderer@uci.edu.
  • Lim J; Center for Occupational and Environmental Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA, 92617, USA. uluderer@uci.edu.
  • Ortiz L; Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92617, USA. uluderer@uci.edu.
  • Nguyen JD; Department of Medicine, University of California Irvine, Irvine, CA, 92617, USA. uluderer@uci.edu.
  • Shin JH; Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA, 92617, USA.
  • Allen BD; Department of Medicine, University of California Irvine, Irvine, CA, 92617, USA.
  • Liao LS; Department of Medicine, University of California Irvine, Irvine, CA, 92617, USA.
  • Malott K; Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA, 92617, USA.
  • Perraud V; Department of Medicine, University of California Irvine, Irvine, CA, 92617, USA.
  • Wingen LM; Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA, 92617, USA.
  • Arechavala RJ; Department of Medicine, University of California Irvine, Irvine, CA, 92617, USA.
  • Bliss B; Department of Environmental and Occupational Health, University of California Irvine, 100 Theory Drive, Suite 100, Irvine, CA, 92617, USA.
  • Herman DA; Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, 92617, USA.
  • Kleinman MT; Department of Chemistry, University of California Irvine, Irvine, CA, 92617, USA.
Part Fibre Toxicol ; 19(1): 5, 2022 01 07.
Article in En | MEDLINE | ID: mdl-34996492
ABSTRACT

BACKGROUND:

Fine particulate matter (PM2.5) exposure accelerates atherosclerosis and contains known ovotoxic chemicals. However, effects of exposure to PM2.5 on the finite ovarian follicle pool have hardly been investigated, nor have interactions between ovarian and cardiovascular effects. We hypothesized that subchronic inhalation exposure to human-relevant concentrations of PM2.5 results in destruction of ovarian follicles via apoptosis induction, as well as accelerated recruitment of primordial follicles into the growing pool. Further, we hypothesized that destruction of ovarian follicles enhances the adverse cardiovascular effects of PM2.5 in females.

RESULTS:

Hyperlipidemic apolipoprotein E (Apoe) null ovary-intact or ovariectomized female mice and testis-intact male mice were exposed to concentrated ambient PM2.5 or filtered air for 12 weeks, 5 days/week for 4 h/day using a versatile aerosol concentration enrichment system. Primordial, primary, and secondary ovarian follicle numbers were decreased by 45%, 40%, and 17%, respectively, in PM2.5-exposed ovary-intact mice compared to controls (P < 0.05). The percentage of primary follicles with granulosa cells positive for the mitosis marker Ki67 was increased in the ovaries from PM2.5-exposed females versus controls (P < 0.05), consistent with increased recruitment of primordial follicles into the growing pool. Exposure to PM2.5 increased the percentages of primary and secondary follicles with DNA damage, assessed by γH2AX immunostaining (P < 0.05). Exposure to PM2.5 increased the percentages of apoptotic antral follicles, determined by TUNEL and activated caspase 3 immunostaining (P < 0.05). Removal of the ovaries and PM2.5-exposure exacerbated the atherosclerotic effects of hyperlipidemia in females (P < 0.05). While there were statistically significant changes in blood pressure and heart rate variability in PM2.5-compared to Air-exposed gonad-intact males and females and ovariectomized females, the changes were not consistent between exposure years and assessment methods.

CONCLUSIONS:

These results demonstrate that subchronic PM2.5 exposure depletes the ovarian reserve by increasing recruitment of primordial follicles into the growing pool and increasing apoptosis of growing follicles. Further, PM2.5 exposure and removal of the ovaries each increase atherosclerosis progression in Apoe-/- females. Premature loss of ovarian function is associated with increased risk of osteoporosis, cardiovascular disease and Alzheimer's disease in women. Our results thus support possible links between PM2.5 exposure and other adverse health outcomes in women.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ovarian Reserve Type of study: Etiology_studies Limits: Animals Language: En Journal: Part Fibre Toxicol Journal subject: TOXICOLOGIA Year: 2022 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ovarian Reserve Type of study: Etiology_studies Limits: Animals Language: En Journal: Part Fibre Toxicol Journal subject: TOXICOLOGIA Year: 2022 Document type: Article Affiliation country: