Your browser doesn't support javascript.
loading
A Novel Bacteriophage with Broad Host Range against Clostridioides difficile Ribotype 078 Supports SlpA as the Likely Phage Receptor.
Whittle, M J; Bilverstone, T W; van Esveld, R J; Lücke, A C; Lister, M M; Kuehne, S A; Minton, N P.
Affiliation
  • Whittle MJ; Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottinghamgrid.4563.4, Nottingham, United Kingdom.
  • Bilverstone TW; Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottinghamgrid.4563.4, Nottingham, United Kingdom.
  • van Esveld RJ; Faculty of Medicine, Leiden University Medical Centre, the Netherlands.
  • Lücke AC; Hannover Medical School, Hannover, Germany.
  • Lister MM; Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottinghamgrid.4563.4, Nottingham, United Kingdom.
  • Kuehne SA; NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and The University of Nottinghamgrid.4563.4, Nottingham, United Kingdom.
  • Minton NP; Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, Biodiscovery Institute, The University of Nottinghamgrid.4563.4, Nottingham, United Kingdom.
Microbiol Spectr ; 10(1): e0229521, 2022 02 23.
Article in En | MEDLINE | ID: mdl-35107319
ABSTRACT
Bacteriophages represent a promising option for the treatment of Clostridioides difficile (formerly Clostridium difficile) infection (CDI), which at present relies on conventional antibiotic therapy. The specificity of bacteriophages should prevent dysbiosis of the colonic microbiota associated with antibiotic treatment of CDI. While numerous phages have been isolated, none have been characterized with broad host range activity toward PCR ribotype (RT) 078 strains, despite their relevance to medicine and agriculture. In this study, we isolated four novel C. difficile myoviruses ΦCD08011, ΦCD418, ΦCD1801, and ΦCD2301. Their characterization revealed that each was comparable with other C. difficile phages described in the literature, with the exception of ΦCD1801, which exhibited broad host range activity toward RT 078, infecting 15/16 (93.8%) of the isolates tested. In order for wild-type phages to be exploited in the effective treatment of CDI, an optimal phage cocktail must be assembled that provides broad coverage against all C. difficile RTs. We conducted experiments to support previous findings suggesting that SlpA, a constituent of the C. difficile surface layer (S-layer) is the likely phage receptor. Through interpretation of phage-binding assays, our data suggested that ΦCD1801 could bind to an RT 012 strain only in the presence of a plasmid-borne S-layer cassette corresponding to the slpA allele found in RT 078. Armed with this information, efforts should be directed toward the isolation of phages with broad host range activity toward defined S-layer cassette types, which could form the basis of an effective phage cocktail for the treatment of CDI. IMPORTANCE Research into phage therapy has seen a resurgence in recent years owing to growing concerns regarding antimicrobial resistance. Phage research for potential therapy against Clostridioides difficile infection (CDI) is in its infancy, where an optimal "one size fits all" phage cocktail is yet to be derived. The pursuit thus far has aimed to find phages with the broadest possible host range. However, for C. difficile strains belonging to certain PCR ribotypes (RTs), in particular RT 078, phages with broad host range activity are yet to be discovered. In this study, we isolate four novel myoviruses, including ΦCD1801, which exerts the broadest host range activity toward RT 078 reported in the literature. Through the application of ΦCD1801 to phage-binding assays, we provide data to support the prior notion that SlpA represents the likely phage receptor on the bacterial cell surface. Our finding directs research attention toward the isolation of phages with activity toward strains possessing defined S-layer cassette types.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bacterial Proteins / Bacteriophages / Clostridioides difficile / Host Specificity / Bacteriophage Receptors Limits: Humans Language: En Journal: Microbiol Spectr Year: 2022 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bacterial Proteins / Bacteriophages / Clostridioides difficile / Host Specificity / Bacteriophage Receptors Limits: Humans Language: En Journal: Microbiol Spectr Year: 2022 Document type: Article Affiliation country:
...