Your browser doesn't support javascript.
loading
Towards comprehensive understanding of bacterial genetic diversity: large-scale amplifications in Bordetella pertussis and Mycobacterium tuberculosis.
Abrahams, Jonathan S; Weigand, Michael R; Ring, Natalie; MacArthur, Iain; Etty, Joss; Peng, Scott; Williams, Margaret M; Bready, Barret; Catalano, Anthony P; Davis, Jennifer R; Kaiser, Michael D; Oliver, John S; Sage, Jay M; Bagby, Stefan; Tondella, M Lucia; Gorringe, Andrew R; Preston, Andrew.
Affiliation
  • Abrahams JS; Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK.
  • Weigand MR; Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
  • Ring N; Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK.
  • MacArthur I; Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK.
  • Etty J; Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK.
  • Peng S; Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
  • Williams MM; Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
  • Bready B; Nabsys 2.0, Providence, RI 02809, USA.
  • Catalano AP; Nabsys 2.0, Providence, RI 02809, USA.
  • Davis JR; Nabsys 2.0, Providence, RI 02809, USA.
  • Kaiser MD; Nabsys 2.0, Providence, RI 02809, USA.
  • Oliver JS; Nabsys 2.0, Providence, RI 02809, USA.
  • Sage JM; Nabsys 2.0, Providence, RI 02809, USA.
  • Bagby S; Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK.
  • Tondella ML; Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
  • Gorringe AR; Public Health England, Porton Down, Salisbury, UK.
  • Preston A; Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK.
Microb Genom ; 8(2)2022 02.
Article in En | MEDLINE | ID: mdl-35143385
ABSTRACT
Bacterial genetic diversity is often described solely using base-pair changes despite a wide variety of other mutation types likely being major contributors. Tandem duplication/amplifications are thought to be widespread among bacteria but due to their often-intractable size and instability, comprehensive studies of these mutations are rare. We define a methodology to investigate amplifications in bacterial genomes based on read depth of genome sequence data as a proxy for copy number. We demonstrate the approach with Bordetella pertussis, whose insertion sequence element-rich genome provides extensive scope for amplifications to occur. Analysis of data for 2430 B. pertussis isolates identified 272 putative amplifications, of which 94 % were located at 11 hotspot loci. We demonstrate limited phylogenetic connection for the occurrence of amplifications, suggesting unstable and sporadic characteristics. Genome instability was further described in vitro using long-read sequencing via the Nanopore platform, which revealed that clonally derived laboratory cultures produced heterogenous populations rapidly. We extended this research to analyse a population of 1000 isolates of another important pathogen, Mycobacterium tuberculosis. We found 590 amplifications in M. tuberculosis, and like B. pertussis, these occurred primarily at hotspots. Genes amplified in B. pertussis include those involved in motility and respiration, whilst in M. tuberuclosis, functions included intracellular growth and regulation of virulence. Using publicly available short-read data we predicted previously unrecognized, large amplifications in B. pertussis and M. tuberculosis. This reveals the unrecognized and dynamic genetic diversity of B. pertussis and M. tuberculosis, highlighting the need for a more holistic understanding of bacterial genetics.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Genetic Variation / Bordetella pertussis / Mycobacterium tuberculosis Type of study: Prognostic_studies Language: En Journal: Microb Genom Year: 2022 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Genetic Variation / Bordetella pertussis / Mycobacterium tuberculosis Type of study: Prognostic_studies Language: En Journal: Microb Genom Year: 2022 Document type: Article Affiliation country: