Your browser doesn't support javascript.
loading
Recent Progress in Iron-Based Microwave Absorbing Composites: A Review and Prospective.
Zheng, Wei; Ye, Wenxian; Yang, Pingan; Wang, Dashuang; Xiong, Yuting; Liu, Zhiyong; Qi, Jindong; Zhang, Yuxin.
Affiliation
  • Zheng W; China Academy of Space Technology (Xi'an), Institute of Space Antenna, Xi'an 710100, China.
  • Ye W; School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
  • Yang P; School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
  • Wang D; College of Material Science and Engineering, Chongqing University, Chongqing 400044, China.
  • Xiong Y; School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
  • Liu Z; School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
  • Qi J; School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.
  • Zhang Y; College of Material Science and Engineering, Chongqing University, Chongqing 400044, China.
Molecules ; 27(13)2022 Jun 27.
Article in En | MEDLINE | ID: mdl-35807363
ABSTRACT
With the rapid development of communication technology in civil and military fields, the problem of electromagnetic radiation pollution caused by the electromagnetic wave becomes particularly prominent and brings great harm. It is urgent to explore efficient electromagnetic wave absorption materials to solve the problem of electromagnetic radiation pollution. Therefore, various absorbing materials have developed rapidly. Among them, iron (Fe) magnetic absorbent particle material with superior magnetic properties, high Snoek's cut-off frequency, saturation magnetization and Curie temperature, which shows excellent electromagnetic wave loss ability, are kinds of promising absorbing material. However, ferromagnetic particles have the disadvantages of poor impedance matching, easy oxidation, high density, and strong skin effect. In general, the two strategies of morphological structure design and multi-component material composite are utilized to improve the microwave absorption performance of Fe-based magnetic absorbent. Therefore, Fe-based microwave absorbing materials have been widely studied in microwave absorption. In this review, through the summary of the reports on Fe-based electromagnetic absorbing materials in recent years, the research progress of Fe-based absorbing materials is reviewed, and the preparation methods, absorbing properties and absorbing mechanisms of iron-based absorbing materials are discussed in detail from the aspects of different morphologies of Fe and Fe-based composite absorbers. Meanwhile, the future development direction of Fe-based absorbing materials is also prospected, providing a reference for the research and development of efficient electromagnetic wave absorbing materials with strong absorption performance, frequency bandwidth, light weight and thin thickness.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Molecules Journal subject: BIOLOGIA Year: 2022 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Molecules Journal subject: BIOLOGIA Year: 2022 Document type: Article Affiliation country: