Your browser doesn't support javascript.
loading
Avirulent phenotype promotes Bordetella pertussis adaptation to the intramacrophage environment.
Farman, Mariam R; Petrácková, Denisa; Kumar, Dilip; Drzmísek, Jakub; Saha, Argha; Curnová, Ivana; Capek, Jan; Hejnarová, Václava; Amman, Fabian; Hofacker, Ivo; Vecerek, Branislav.
Affiliation
  • Farman MR; Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria.
  • Petrácková D; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic.
  • Kumar D; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic.
  • Drzmísek J; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic.
  • Saha A; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic.
  • Curnová I; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic.
  • Capek J; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic.
  • Hejnarová V; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic.
  • Amman F; Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria.
  • Hofacker I; Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria.
  • Vecerek B; Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Institute of Microbiology, Prague, Czech Republic.
Emerg Microbes Infect ; 12(1): e2146536, 2023 Dec.
Article in En | MEDLINE | ID: mdl-36357372
ABSTRACT
Bordetella pertussis, the causative agent of whooping cough, is an extracellular, strictly human pathogen. However, it has been shown that B. pertussis cells can escape phagocytic killing and survive in macrophages upon internalization. Our time-resolved RNA-seq data suggest that B. pertussis efficiently adapts to the intramacrophage environment and responds to host bactericidal activities. We show that this adaptive response is multifaceted and, surprisingly, related to the BvgAS two-component system, a master regulator of virulence. Our results show that the expression of this regulatory circuit is downregulated upon internalization. Moreover, we demonstrate that the switch to the avirulent Bvg- phase augments a very complex process based on the adjustment of central and energy metabolism, cell wall reinforcement, maintenance of appropriate redox and metal homeostasis, and repair of damaged macromolecules. Nevertheless, not all observed effects could be simply attributed to the transition to Bvg- phase, suggesting that additional regulators are involved in the adaptation to the intramacrophage environment. Interestingly, a large number of genes required for the metabolism of sulphur were strongly modulated within macrophages. In particular, the mutant lacking two genes encoding cysteine dioxygenases displayed strongly attenuated cytotoxicity toward THP-1 cells. Collectively, our results suggest that intracellular B. pertussis cells have adopted the Bvg- mode to acclimate to the intramacrophage environment and respond to antimicrobial activities elicited by THP-1 cells. Therefore, we hypothesize that the avirulent phase represents an authentic phenotype of internalized B. pertussis cells.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bordetella pertussis / Whooping Cough Limits: Humans Language: En Journal: Emerg Microbes Infect Year: 2023 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bordetella pertussis / Whooping Cough Limits: Humans Language: En Journal: Emerg Microbes Infect Year: 2023 Document type: Article Affiliation country:
...