Your browser doesn't support javascript.
loading
The Role of eIF5A1 in LPS-Induced Neuronal Remodeling of the Nucleus Accumbens in the Depression.
Lyu, Qiang; Zou, Hecun; Luo, Li; Liu, Wei; He, Xiang; Shang, Fei-Fei.
Affiliation
  • Lyu Q; Department of Anesthesiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 610072 Chengdu, Sichuan, China.
  • Zou H; Institute of Life Science, Chongqing Medical University, 400016 Chongqing, China.
  • Luo L; Institute of Life Science, Chongqing Medical University, 400016 Chongqing, China.
  • Liu W; Department of Anesthesiology, Huashan Hospital, Fudan University, 200040 Shanghai, China.
  • He X; Department of Anesthesiology, Guizhou Provincial People's Hospital, 550002 Guiyang, Guizhou, China.
  • Shang FF; Institute of Life Science, Chongqing Medical University, 400016 Chongqing, China.
J Integr Neurosci ; 22(1): 14, 2023 Jan 11.
Article in En | MEDLINE | ID: mdl-36722231
ABSTRACT

BACKGROUND:

The pathogenesis of depression is complex, with the brain's reward system likely to play an important role. The nucleus accumbens (NAc) is a key region in the brain that integrates reward signals. Lipopolysaccharides (LPS) can induce depressive-like behaviors and enhance neuroplasticity in NAc, but the underlying mechanism is still unknown. We previously found that eukaryotic translation initiation factor A1 (eIF5A1) acts as a ribosome-binding protein to regulate protein translation and to promote neuroplasticity.

METHODS:

In the present study, LPS was administered intraperitoneally to rats and the expression and cellular location of eIF5A1 was then investigated by RT-PCR, Western blotting and immunofluorescence. Subsequently, a neuron-specific lentivirus was used to regulate eIF5A1 expression in vivo and in vitro. Neuroplasticity was then examined by Golgi staining and by measurement of neuronal processes. Finally, proteomic analysis was used to identify proteins regulated by eIF5A1.

RESULTS:

The results showed that eIF5A1 expression was significantly increased in the NAc neurons of LPS rats. Following the knockdown of eIF5A1 in NAc neurons, the LPS-induced increases in neuronal arbors and spine density were significantly attenuated. Depression-like behaviors were also reduced. Neurite outgrowth of NAc neurons in vitro also increased or decreased in parallel with the increase or decrease in eIF5A1 expression, respectively. The proteomic results showed that eIF5A1 regulates the expression of many neuroplasticity-related proteins in neurons.

CONCLUSIONS:

These results confirm that eIF5A1 is involved in LPS-induced depression-like behavior by increasing neuroplasticity in the NAc. Our study also suggests the brain's reward system may play an important role in the pathogenesis of depression.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Peptide Initiation Factors / Depression / Nucleus Accumbens Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Integr Neurosci Journal subject: NEUROLOGIA Year: 2023 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Peptide Initiation Factors / Depression / Nucleus Accumbens Type of study: Prognostic_studies Limits: Animals Language: En Journal: J Integr Neurosci Journal subject: NEUROLOGIA Year: 2023 Document type: Article Affiliation country: