Your browser doesn't support javascript.
loading
Species-specific regulation of XIST by the JPX/FTX orthologs.
Rosspopoff, Olga; Cazottes, Emmanuel; Huret, Christophe; Loda, Agnese; Collier, Amanda J; Casanova, Miguel; Rugg-Gunn, Peter J; Heard, Edith; Ouimette, Jean-François; Rougeulle, Claire.
Affiliation
  • Rosspopoff O; Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France.
  • Cazottes E; Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France.
  • Huret C; Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France.
  • Loda A; Directors' research, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
  • Collier AJ; Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK.
  • Casanova M; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.
  • Rugg-Gunn PJ; Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France.
  • Heard E; Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK.
  • Ouimette JF; Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.
  • Rougeulle C; Directors' research, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
Nucleic Acids Res ; 51(5): 2177-2194, 2023 03 21.
Article in En | MEDLINE | ID: mdl-36727460
ABSTRACT
X chromosome inactivation (XCI) is an essential process, yet it initiates with remarkable diversity in various mammalian species. XIST, the main trigger of XCI, is controlled in the mouse by an interplay of lncRNA genes (LRGs), some of which evolved concomitantly to XIST and have orthologues across all placental mammals. Here, we addressed the functional conservation of human orthologues of two such LRGs, FTX and JPX. By combining analysis of single-cell RNA-seq data from early human embryogenesis with various functional assays in matched human and mouse pluripotent stem- or differentiated post-XCI cells, we demonstrate major functional differences for these orthologues between species, independently of primary sequence conservation. While the function of FTX is not conserved in humans, JPX stands as a major regulator of XIST expression in both species. However, we show that different entities of JPX control the production of XIST at various steps depending on the species. Altogether, our study highlights the functional versatility of LRGs across evolution, and reveals that functional conservation of orthologous LRGs may involve diversified mechanisms of action. These findings represent a striking example of how the evolvability of LRGs can provide adaptative flexibility to constrained gene regulatory networks.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Placenta / RNA, Long Noncoding Limits: Animals / Female / Humans / Pregnancy Language: En Journal: Nucleic Acids Res Year: 2023 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Placenta / RNA, Long Noncoding Limits: Animals / Female / Humans / Pregnancy Language: En Journal: Nucleic Acids Res Year: 2023 Document type: Article Affiliation country: