Your browser doesn't support javascript.
loading
Organoid models of fibrolamellar carcinoma mutations reveal hepatocyte transdifferentiation through cooperative BAP1 and PRKAR2A loss.
Rüland, Laura; Andreatta, Francesco; Massalini, Simone; Chuva de Sousa Lopes, Susana; Clevers, Hans; Hendriks, Delilah; Artegiani, Benedetta.
Affiliation
  • Rüland L; The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
  • Andreatta F; The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
  • Massalini S; The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
  • Chuva de Sousa Lopes S; Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
  • Clevers H; The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
  • Hendriks D; Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
  • Artegiani B; Oncode Institute, Utrecht, The Netherlands.
Nat Commun ; 14(1): 2377, 2023 05 03.
Article in En | MEDLINE | ID: mdl-37137901
Fibrolamellar carcinoma (FLC) is a lethal primary liver cancer, affecting young patients in absence of chronic liver disease. Molecular understanding of FLC tumorigenesis is limited, partly due to the scarcity of experimental models. Here, we CRISPR-engineer human hepatocyte organoids to recreate different FLC backgrounds, including the predominant genetic alteration, the DNAJB1-PRKACA fusion, as well as a recently reported background of FLC-like tumors, encompassing inactivating mutations of BAP1 and PRKAR2A. Phenotypic characterizations and comparisons with primary FLC tumor samples revealed mutant organoid-tumor similarities. All FLC mutations caused hepatocyte dedifferentiation, yet only combined loss of BAP1 and PRKAR2A resulted in hepatocyte transdifferentiation into liver ductal/progenitor-like cells that could exclusively grow in a ductal cell environment. BAP1-mutant hepatocytes represent primed cells attempting to proliferate in this cAMP-stimulating environment, but require concomitant PRKAR2A loss to overcome cell cycle arrest. In all analyses, DNAJB1-PRKACAfus organoids presented with milder phenotypes, suggesting differences between FLC genetic backgrounds, or for example the need for additional mutations, interactions with niche cells, or a different cell-of-origin. These engineered human organoid models facilitate the study of FLC.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Carcinoma, Hepatocellular / Liver Neoplasms Limits: Humans Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2023 Document type: Article Affiliation country: Country of publication:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Carcinoma, Hepatocellular / Liver Neoplasms Limits: Humans Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2023 Document type: Article Affiliation country: Country of publication: