Your browser doesn't support javascript.
loading
Effects of Medications on Heat Loss Capacity in Chronic Disease Patients: Health Implications Amidst Global Warming.
Wee, Jericho; Tan, Xiang Ren; Gunther, Samuel H; Ihsan, Mohammed; Leow, Melvin Khee Shing; Tan, Doreen Su-Yin; Eriksson, Johan G; Lee, Jason Kai Wei.
Affiliation
  • Wee J; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Ce
  • Tan XR; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Ce
  • Gunther SH; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Ce
  • Ihsan M; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Ce
  • Leow MKS; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Ce
  • Tan DS; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Ce
  • Eriksson JG; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Ce
  • Lee JKW; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (J.W., X.R.T., S.H.G., M.I., M.K.S.L., J.G.E., J.K.W.L.), Department of Pharmacy, Faculty of Science, (D.S.-Y.T), Department of Physiology, Yong Loo Lin School of Medicine (J.K.W.L.), Heat Resilience and Performance Ce
Pharmacol Rev ; 75(6): 1140-1166, 2023 Nov.
Article in En | MEDLINE | ID: mdl-37328294
ABSTRACT
Pharmacological agents used to treat or manage diseases can modify the level of heat strain experienced by chronically ill and elderly patients via different mechanistic pathways. Human thermoregulation is a crucial homeostatic process that maintains body temperature within a narrow range during heat stress through dry (i.e., increasing skin blood flow) and evaporative (i.e., sweating) heat loss, as well as active inhibition of thermogenesis, which is crucial to avoid overheating. Medications can independently and synergistically interact with aging and chronic disease to alter homeostatic responses to rising body temperature during heat stress. This review focuses on the physiologic changes, with specific emphasis on thermolytic processes, associated with medication use during heat stress. The review begins by providing readers with a background of the global chronic disease burden. Human thermoregulation and aging effects are then summarized to give an understanding of the unique physiologic changes faced by older adults. The effects of common chronic diseases on temperature regulation are outlined in the main sections. Physiologic impacts of common medications used to treat these diseases are reviewed in detail, with emphasis on the mechanisms by which these medications alter thermolysis during heat stress. The review concludes by providing perspectives on the need to understand the effects of medication use in hot environments, as well as a summary table of all clinical considerations and research needs of the medications included in this review. SIGNIFICANCE STATEMENT Long-term medications modulate thermoregulatory function, resulting in excess physiological strain and predisposing patients to adverse health outcomes during prolonged exposures to extreme heat during rest and physical work (e.g., exercise). Understanding the medication-specific mechanisms of altered thermoregulation has importance in both clinical and research settings, paving the way for work toward refining current medication prescription recommendations and formulating mitigation strategies for adverse drug effects in the heat in chronically ill patients.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Global Warming / Hot Temperature Type of study: Guideline Limits: Aged / Humans Language: En Journal: Pharmacol Rev Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Global Warming / Hot Temperature Type of study: Guideline Limits: Aged / Humans Language: En Journal: Pharmacol Rev Year: 2023 Document type: Article
...