Your browser doesn't support javascript.
loading
The FSH-mTOR-CNP signaling axis initiates follicular antrum formation by regulating tight junction, ion pumps, and aquaporins.
Wang, Xiaodong; Zhou, Shanshan; Wu, Zian; Liu, Ruiyan; Ran, Zaohong; Liao, Jianning; Shi, Hongru; Wang, Feng; Chen, Jianguo; Liu, Guoshi; Liang, Aixin; Yang, Liguo; Zhang, Shujun; Li, Xiang; He, Changjiu.
Affiliation
  • Wang X; National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
  • Zhou S; National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
  • Wu Z; National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
  • Liu R; National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
  • Ran Z; National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
  • Liao J; National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
  • Shi H; National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
  • Wang F; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, USA.
  • Chen J; National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
  • Liu G; Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.
  • Liang A; National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
  • Yang L; National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
  • Zhang S; National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
  • Li X; National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
  • He C; National Center for International Research on Animal Genetics, Breeding and Reproduction/Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
J Biol Chem ; 299(8): 105015, 2023 08.
Article in En | MEDLINE | ID: mdl-37414146
ABSTRACT
The initial formation of the follicular antrum (iFFA) serves as a dividing line between gonadotropin-independent and gonadotropin-dependent folliculogenesis, enabling the follicle to sensitively respond to gonadotropins for its further development. However, the mechanism underlying iFFA remains elusive. Herein, we reported that iFFA is characterized by enhanced fluid absorption, energy consumption, secretion, and proliferation and shares a regulatory mechanism with blastula cavity formation. By use of bioinformatics analysis, follicular culture, RNA interference, and other techniques, we further demonstrated that the tight junction, ion pumps, and aquaporins are essential for follicular fluid accumulation during iFFA, as a deficiency of any one of these negatively impacts fluid accumulation and antrum formation. The intraovarian mammalian target of rapamycin-C-type natriuretic peptide pathway, activated by follicle-stimulating hormone, initiated iFFA by activating tight junction, ion pumps, and aquaporins. Building on this, we promoted iFFA by transiently activating mammalian target of rapamycin in cultured follicles and significantly increased oocyte yield. These findings represent a significant advancement in iFFA research, further enhancing our understanding of folliculogenesis in mammals.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Tight Junctions / Aquaporins Limits: Animals Language: En Journal: J Biol Chem Year: 2023 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Tight Junctions / Aquaporins Limits: Animals Language: En Journal: J Biol Chem Year: 2023 Document type: Article Affiliation country: