Your browser doesn't support javascript.
loading
Hypoxia-reprogramed megamitochondrion contacts and engulfs lysosome to mediate mitochondrial self-digestion.
Hao, Tianshu; Yu, Jianglong; Wu, Zhida; Jiang, Jie; Gong, Longlong; Wang, Bingjun; Guo, Hanze; Zhao, Huabin; Lu, Bin; Engelender, Simone; He, He; Song, Zhiyin.
Affiliation
  • Hao T; College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China.
  • Yu J; College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China.
  • Wu Z; College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China.
  • Jiang J; College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China.
  • Gong L; College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China.
  • Wang B; College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China.
  • Guo H; College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China.
  • Zhao H; College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China.
  • Lu B; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
  • Engelender S; Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
  • He H; College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China. hehe2013@whu.edu.cn.
  • Song Z; College of Life Sciences, Taikang center for life and medical sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, Hubei, China. songzy@whu.edu.cn.
Nat Commun ; 14(1): 4105, 2023 07 11.
Article in En | MEDLINE | ID: mdl-37433770
ABSTRACT
Mitochondria are the key organelles for sensing oxygen, which is consumed by oxidative phosphorylation to generate ATP. Lysosomes contain hydrolytic enzymes that degrade misfolded proteins and damaged organelles to maintain cellular homeostasis. Mitochondria physically and functionally interact with lysosomes to regulate cellular metabolism. However, the mode and biological functions of mitochondria-lysosome communication remain largely unknown. Here, we show that hypoxia remodels normal tubular mitochondria into megamitochondria by inducing broad inter-mitochondria contacts and subsequent fusion. Importantly, under hypoxia, mitochondria-lysosome contacts are promoted, and certain lysosomes are engulfed by megamitochondria, in a process we term megamitochondria engulfing lysosome (MMEL). Both megamitochondria and mature lysosomes are required for MMEL. Moreover, the STX17-SNAP29-VAMP7 complex contributes to mitochondria-lysosome contacts and MMEL under hypoxia. Intriguingly, MMEL mediates a mode of mitochondrial degradation, which we termed mitochondrial self-digestion (MSD). Moreover, MSD increases mitochondrial ROS production. Our results reveal a mode of crosstalk between mitochondria and lysosomes and uncover an additional pathway for mitochondrial degradation.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Lysosomes / Mitochondria Limits: Humans Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2023 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Lysosomes / Mitochondria Limits: Humans Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2023 Document type: Article Affiliation country:
...