Your browser doesn't support javascript.
loading
Influence of High-Temperature and Intense Light on the Enzymatic Antioxidant System in Ginger (Zingiber officinale Roscoe) Plantlets.
Gong, Min; Jiang, Dongzhu; Liu, Ran; Tian, Shuming; Xing, Haitao; Chen, Zhiduan; Shi, Rujie; Li, Hong-Lei.
Affiliation
  • Gong M; College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
  • Jiang D; College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China.
  • Liu R; College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China.
  • Tian S; College of Horticulture and Gardening, Yangtze University, Jingzhou 433200, China.
  • Xing H; Chongqing Tianyuan Agricultural Technology Co., Ltd., Chongqing 402100, China.
  • Chen Z; College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
  • Shi R; College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China.
  • Li HL; College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing 402160, China.
Metabolites ; 13(9)2023 Sep 04.
Article in En | MEDLINE | ID: mdl-37755272
ABSTRACT
Environmental stressors such as high temperature and intense light have been shown to have negative effects on plant growth and productivity. To survive in such conditions, plants activate several stress response mechanisms. The synergistic effect of high-temperature and intense light stress has a significant impact on ginger, leading to reduced ginger production. Nevertheless, how ginger responds to this type of stress is not yet fully understood. In this study, we examined the phenotypic changes, malonaldehyde (MDA) content, and the response of four vital enzymes (superoxide dismutase (SOD), catalase (CAT), lipoxygenase (LOX), and nitrate reductase (NR)) in ginger plants subjected to high-temperature and intense light stress. The findings of this study indicate that ginger is vulnerable to high temperature and intense light stress. This is evident from the noticeable curling, yellowing, and wilting of ginger leaves, as well as a decrease in chlorophyll index and an increase in MDA content. Our investigation confirms that ginger plants activate multiple stress response pathways, including the SOD and CAT antioxidant defenses, and adjust their response over time by switching to different pathways. Additionally, we observe that the expression levels of genes involved in different stress response pathways, such as SOD, CAT, LOX, and NR, are differently regulated under stress conditions. These findings offer avenues to explore the stress mechanisms of ginger in response to high temperature and intense light. They also provide interesting information for the choice of genetic material to use in breeding programs for obtaining ginger genotypes capable of withstanding high temperatures and intense light stress.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Metabolites Year: 2023 Document type: Article Affiliation country:

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Metabolites Year: 2023 Document type: Article Affiliation country: